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Abstract

I derive a set of new analytic results for the effects of trend inflation on aggregate

price and output dynamics in menu cost models. I find that positive trend inflation:

(1) induces asymmetry in price and output responses to monetary shocks, (2) leads

to price overshooting after large shocks, and (3) overturns the monetary neutrality

result for large shocks. Under positive trend inflation, large expansionary monetary

interventions lead to output contractions, and smaller expansionary interventions

have substantially lower potency. I show that these model predictions are empirically

supported by U.S. sectoral data. Calibrating a general equilibrium model to the

U.S. economy, I find sizable effects of trend inflation on the effectiveness of monetary

stabilization policy. Raising the inflation target from 2% to 4% increases the

economy’s sensitivity to an adverse markup shock and worsens the trade-off between

price and output stability.
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1 Introduction

Over the last decade there has been a discussion on whether central banks should raise

their inflation targets and achieve higher levels of trend inflation. In August 2020 the

Federal Reserve announced a major change to its policy, which would allow inflation

to stay above the 2% target after a period of below-target inflation, whereas previously

the Federal Reserve would not have tolerated such deviations. Just a month later, in

September 2020, the European Central Bank stated that it would consider shifting to

a symmetric inflation target, instead of targeting inflation rates of “below, but close to,

2%”. Given the currently very low levels of inflation, both of these measures are aimed at

increasing inflation expectations, which would in turn decrease expected real interest rates

and stimulate consumption.

While these measures are designed to have a positive effect on the demand of house-

holds, they would also affect inflation expectations of firms. This would change the

price-setting behavior of firms, which is central for the transmission of monetary policy

because it determines aggregate price and output responses to shocks. In this paper I

study how changes in the level of trend inflation affect the price-setting behavior of firms

and the aggregate price and output dynamics. The results have important implications for

the effectiveness of monetary stabilization policy and, more generally, provide new insights

into aggregate dynamics in economies with lumpy adjustments.

First, I analytically characterize aggregate price and output dynamics in economies

with small levels of trend inflation. I show that changes in the level of trend inflation

affect aggregate responses to positive and negative shocks asymmetrically. A higher level

of trend inflation reduces the overall potency of monetary policy to stimulate output and

reverts its effects for sufficiently large shocks. I obtain novel analytic results by studying

shocks of arbitrary size, in contrast to the previous literature which focused on marginal

shocks. Second, I provide supporting empirical evidence for the new analytic predictions,

using U.S. sectoral data. Third, I find that the effect of trend inflation is sizable in a

general equilibrium model calibrated to the U.S. economy. I show that a higher inflation

target impedes the ability of a monetary authority to counteract adverse shocks that move

output and prices in opposite directions. Finally, many of the analytic results are of a more

general interest, as they can be applied in other environments with lumpy adjustments,

including models of capital and labor adjustment, and durable good consumption.1

New Analytic Results. I use the workhorse menu cost model of price dynamics, in

which firms face an exogenously given desired price, determined by common trend inflation

(drift) and idiosyncratic shocks. Flow profit is maximized when the actual price is equal

1As an example, I show in Appendix E how the analytic results of this paper can be applied to a model
of capital investment.
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to the desired one, and price adjustment comes at a fixed cost. Because of the cost, firms

keep their prices constant most of the time and adjust infrequently, which results in gaps

between actual and desired prices. These price gaps are the key variable in the model

and the evolution of the price gap distribution determines aggregate price and output

dynamics.

Following the literature, I consider an unexpected permanent one-time monetary

shock. To avoid ambiguity, I label shocks as ‘positive’ vs. ‘negative’ when referring to

the intended effects of monetary policy (e.g., interest rate cuts vs. hikes). I show that

the key property of trend inflation is that it affects responses to positive and negative

shocks asymmetrically. In particular, increasing the level of trend inflation amplifies price

responses to positive monetary shocks and mitigates price responses to negative monetary

shocks. Since the strength of output responses is inversely related to the magnitude of

aggregate price responses, the effect of trend inflation on output is reversed. With a higher

level of trend inflation, output becomes less sensitive to positive monetary shocks and

more sensitive to negative monetary shocks.

There are two channels through which trend inflation creates asymmetry in aggregate

dynamics: the optimal policy of firms and the shape of the price gap distribution. First, if

trend inflation is positive, firms expect higher prices in the future and are eager to increase

them once a positive shock arrives, despite the adjustment cost. For the same reason, firms

are reluctant to decrease their prices after a negative shock because it induces additional

adjustment costs in the future. Second, trend inflation erodes relative prices and leads to a

higher concentration of price gaps at the bottom of the price gap distribution. Thus, under

positive trend inflation, positive shocks trigger more firms to adjust compared to negative

shocks. Both of these channels work in the same direction and result in asymmetric

aggregate price and output responses, with the degree of asymmetry depending on the

level of trend inflation.

Positive trend inflation has two additional implications: price overshooting and output

contractions after sufficiently large positive monetary shocks. A shock is considered ‘large’

if it forces all firms to adjust their prices. In an economy with zero trend inflation, large

shocks are neutral – aggregate price responds one-to-one, and output does not move. I show

that in economies with positive trend inflation, large positive shocks cause aggregate price

overreaction and actually reduce output. Firms prefer to overshoot when adjusting upward,

as they anticipate relative price erosion due to positive trend inflation. Overshooting at

the aggregate level occurs if the mass of adjusters is sufficiently large, which highlights

a special effect of the drift on aggregate responses to large shocks. In fact, a shock does

not have to force all firms to adjust to have such an effect – even smaller positive shocks

can cause a decline in output. Therefore, the overall ability of a monetary authority

to stimulate output deteriorates as trend inflation rises: moderate shocks cause weaker

responses, and larger shocks become counterproductive.
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Empirical Evidence. I show that the new analytic results are supported by the data.

To ensure enough variation in the level of trend inflation, I use U.S. sectoral data on the

Producer Price Index (PPI) and industrial production (IP). I compute trend inflation for

each sector as the average PPI growth rate and split sectors into two groups: those with

trend inflation above and below the median. I then estimate non-linear impulse responses

to identified monetary shocks within each group and compare the results between the two

groups.

First, I find that trend inflation is strongly related to the degree of asymmetry in PPI

and production responses to monetary shocks. Price responses in sectors with high trend

inflation exhibit primarily positive asymmetry, i.e., prices rise more after positive shocks

than they fall after negative shocks. On the contrary, the asymmetry of price responses

is negative in sectors with low trend inflation. Responses of industrial production are

generally negatively asymmetric, meaning that production contracts more after negative

shocks than it rises after positive shocks. However, the asymmetry is much more negative

in sectors with higher trend inflation, where positive shocks have almost no impact on

production, and negative shocks cause substantial responses. The model does not always

match the level of asymmetry in the data, but it correctly predicts the relationship between

trend inflation and asymmetry. Even though the results can not be interpreted in a causal

sense, they show that the model predictions are in line with the data.

Second, I find that production responses to positive shocks have an inverse U-shape,

meaning that the maximum stimulative effect on production is achieved for moderate

shock sizes. In addition, sufficiently large positive shocks have a reverse effect, leading to

a contraction in production. As predicted by the model, these reverse effects are strongly

related to the level of trend inflation: the size of a positive shock that leads to a zero

production response is substantially smaller in sectors with higher trend inflation. The

results suggest that monetary policy is not only less effective in stimulating output in

sectors with higher trend inflation, but also has much less ‘room’ for doing so.

Finally, I provide evidence for the mechanism linking trend inflation and asymmetries

in aggregate responses to monetary shocks. I use daily item-level price data provided by the

Billion Prices Project to study the relationship between trend inflation and asymmetry in

individual price adjustments. I find that a one percentage point increase in monthly trend

inflation at the item level is associated with a 5% increase in the ratio between the magni-

tudes of positive and negative adjustments. This relationship between trend inflation and

micro-level asymmetries matches the model predictions and is an important channel leading

to aggregate asymmetries in responses to monetary shocks, as observed in the sectoral data.

Implications for Monetary Policy. Lastly, I show that the effects of trend inflation are

sizable and relevant for policy. I embed the analytic framework into a general equilibrium
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model calibrated to the U.S. economy. I consider an adverse markup shock and study the

ability of a policymaker to stabilize the economy in the baseline model with a 2% inflation

target (trend inflation). I then compare the results with a counterfactual economy, in

which the inflation target is set to 4%.

The analysis is positive, as I do not consider optimal policy, but assume a simple

stabilization objective instead. A markup shock suits this purpose well, as it amplifies

the inefficiency stemming from price dispersion but does not affect the efficient allocation,

which rationalizes the stabilization objective. In addition, the shock increases prices and

depresses consumption, introducing a trade-off for the monetary authority, as it can not

stabilize consumption and prices simultaneously.

I find that raising the inflation target from 2% to 4% has two adverse effects. First,

it amplifies the initial reaction to the markup shock, causing larger consumption and

price deviations. Second, it worsens the stabilization trade-off. A policymaker must

sacrifice more consumption when stabilizing prices and tolerate larger price deviations

when stimulating consumption. These effects are due to weaker upward price rigidity

and stronger downward price rigidity, caused by a higher inflation target. Increasing the

inflation target leads to more price flexibility exactly when it is desirable to have rigid

prices and makes prices stickier exactly when flexibility is needed. In addition, the effects

of trend inflation are more pronounced for larger shocks, in accordance with the analytic

results.

Relation to the Literature. The effect of drift on individual and aggregate behavior has

previously drawn the attention of many researchers. Several early theoretical contributions

(Sheshinski and Weiss (1977), Mankiw and Ball (1994), Tsiddon (1993)) have shown

that trend inflation can affect the magnitude of individual price adjustments and the

mass of adjusting firms after aggregate nominal shocks. My work closely relates to the

subsequent research, which has focused on analytic characterization of aggregate dynamics

in economies with lumpy adjustments (Caballero and Engel (2007), Alvarez and Lippi

(2019) and Baley and Blanco (2020)). This strand of literature has either restricted its

attention to marginal aggregate shocks or considered driftless economies. I contribute

to the literature by simultaneously allowing for non-zero trend inflation and providing

analytic results for shocks of arbitrary size. I show that the two key statistics of aggregate

price and output dynamics – the impact effect and the cumulative impulse response (CIR),

are both affected by trend inflation to first order, in contrast to the results obtained

for marginal shocks. The analysis requires an analytic characterization of the CIR for

non-zero levels of trend inflation. Alvarez, Le Bihan, and Lippi (2016) show that in order

to compute the CIR in an economy with no drift, it is sufficient to track agents until

the first time of adjustment, as subsequent paths net out to zero in expectation. I show

that non-zero drift introduces an additional term, which is related to paths after the first
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adjustment. I propose two ways of computing the new term analytically, and the results

apply to settings well beyond the scope of this paper, including other types of aggregate

shocks and functions of interest.

The empirical results of this paper provide new insights into price and output responses

to monetary policy shocks. Several studies have tested whether aggregate impulse responses

exhibit state dependence (Lo and Piger (2005), Auerbach and Gorodnichenko (2012),

Ramey and Zubairy (2014)), asymmetries with respect to positive and negative shocks

(Long and Summers (1988), Cover (1992), Angrist, Jordà, and Kuersteiner (2018)) and

non-linearities with respect to the shock size (Tenreyro and Thwaites (2016), Ascari and

Haber (2020)). I add to the literature by showing that both asymmetry and non-linearity

of aggregate impulse responses are tightly linked to trend inflation. In addition, I provide

evidence for the mechanism behind this link and show that trend inflation affects the

asymmetry of price adjustments at the micro level, even if trend inflation is low. This

result complements the work of Alvarez et al. (2019) who find evidence for this relationship

only in a high inflation environment.

The policy implications of my results contribute to the ongoing discussion on the

role of trend inflation for the effectiveness of monetary stabilization policy. The proposal

of raising inflation targets to gain sufficient policy ‘room’ from the zero lower bound

(see Blanchard, Dell’Ariccia, and Mauro (2010) and Ball (2013)) drew the attention of

researchers to the consequences of higher trend inflation. Ascari and Sbordone (2014)

discuss the implications of a higher inflation target for price dispersion, stability of inflation

expectations and macroeconomic volatility. L’Huillier and Schoenle (2020) argue that a

higher inflation target increases the frequency of price adjustments, lowers the potency

of monetary policy, and thus provides an effective extra room that is smaller than the

nominal one. Blanco (2020) points out that a higher inflation target increases downward

price rigidity, which mitigates recessions at the zero lower bound. I show that higher trend

inflation has an additional adverse impact on the effectiveness of monetary policy away

from the zero lower bound, particularly for shocks that introduce a trade-off between price

and output stability. Although I do not study the optimal level of trend inflation, my

results have implications for the normative analysis (see Coibion, Gorodnichenko, and

Wieland (2012), Adam and Weber (2019), Blanco (2020), and Diercks (2017) for a review).

Adjustment costs appear in numerous economic settings, such as models of lumpy

capital and labor adjustment, durable good consumption and others. Many of these models

can be represented using the same analytical framework as the menu cost model that I

study in this paper. As an example, in Appendix E I show how a simple model of capital

investment can be written in the exact same form as the one used in the main body of the

paper. In many of these models, previous studies have noted the role of drift in shaping

responses to aggregate shocks. In investment models with capital adjustment costs (e.g.,

Khan and Thomas (2008) and Bachmann, Caballero, and Engel (2013)), the distribution of
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mandated investment is highly skewed, and responses to aggregate shocks are asymmetric.

In this setting, capital depreciation plays the role of drift because it erodes capital stock.

Similarly, depreciation of durable goods generates asymmetry in consumption responses

to fiscal stimuli over the cycle in Berger and Vavra (2015). Jaimovich and Siu (2020)

show empirically that employment in routine occupations in the U.S. falls over time

and predominantly during recessions, whereas employment in non-routine occupations is

increasing and does not contract in recessions. These findings provide another example of

the relationship between drift and cyclical behavior and are in line with my analytic results.

Structure of the paper. The next section presents the main analytical results of this

paper. Section 3 provides empirical evidence for these new findings. Section 4 discusses

the implications of the results for monetary stabilization policy in a calibrated general

equilibrium model. Section 5 concludes.

2 Theoretical Results

I consider the simplest version of a two-sided sS model with a quadratic objective and fixed

costs of adjustment. This framework serves as an approximation to numerous applications,

including models of capital, labor or price adjustment, portfolio or inventory management,

as well as durable good consumption. In the following, I outline the model setup and

briefly review the benchmark case of a driftless economy. I then move to economies with

non-zero drift and highlight the main qualitative differences.

2.1 Problem of a Firm

I consider a model of a firm that sets its price subject to a menu cost, given the optimal

price target.2 The instantaneous profits of the firm are given by π(z) = −z2, where

z = ln p − ln p∗ is the log deviation of the current price p from its frictionless optimum

p∗. The optimal price p∗ maximizes the instantaneous profits of the firm and follows a

geometric Brownian motion with drift µ:

d ln p∗(t) = µdt− σdW (t)

where σ > 0 and W (t) is a Wiener process. In this setup, the drift µ corresponds to

trend inflation and is the key parameter of interest. Price adjustment comes at a fixed

cost κ > 0, so that the firm keeps its price p constant most of the time and adjusts it

2Here, I take the optimal price as given. In a standard setting, the price target is typically determined
by a markup over marginal costs, which in turn depend both on aggregate and individual states.
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infrequently. In the absence of price adjustment, the price gap z evolves as follows:

dz(t) = −µdt+ σdW (t)

Whenever the firm intervenes and changes its price by ∆ ln p, the price gap z jumps by

the same amount and in the same direction. The profits are discounted at rate ρ > 0, and

the firm’s objective is to maximize discounted stream of profits subject to the adjustment

costs it pays upon each intervention. Its problem can be formulated entirely in terms of

the price gaps z, with {τi}∞i=1 denoting the sequence of times when the firm adjusts and

{∆zi}∞i=1 being the sequence of adjustments:

v(z) = max
{τi,∆zi}∞i=1

E

[∫ ∞
0

e−ρtπ(z(t))dt−
∞∑
i=1

e−ρτiκ

∣∣∣∣ z(0) = z

]

s.t. z(t) = z(0)− µt+ σW (t) +

N(t)∑
i=1

∆zi

where N(t) is the number of adjustments that occurred until t. This constitutes a standard

impulse control problem, the solution to which are boundaries of inaction region (z, z) and

a return point ẑ. Whenever z(t) ∈ (z, z), the firm keeps its current price and lets the price

gap evolve stochastically. As soon as z(t) reaches one of the boundaries, the firm pays an

adjustment cost κ and sets z(t) = ẑ. At any intervention time τi, the adjustment is given

by ∆zi = ẑ − lim
t↑τi

z(t), where lim
t↑τi

z(t) is the value of z right before the adjustment and is

equal to either z or z.

The value function v(z) satisfies the following Hamilton–Jacobi–Bellman equation for

any z ∈ (z, z):

ρv(z) = −z2 − µv′(z) +
σ2

2
v′′(z)

together with smooth pasting conditions v′(z) = v′(z) = 0, optimality of return point

v′(ẑ) = 0 and boundary conditions v(z) = v(z) = v(ẑ)− κ. These conditions constitute

a system of equations, which implicitly defines the solution triplet {z(µ), ẑ(µ), z(µ)}. I

highlight the dependence of optimal policy on trend inflation by explicitly stating µ as its

argument, even though it also depends on other model parameters.

2.2 Aggregate Dynamics

Assume that the economy is populated by a continuum of ex-ante identical firms that face

the same drift in optimal price µ but experience idiosyncratic shocks. Firms follow the

same policy {z(µ), ẑ(µ), z(µ)} and the economy has a stationary distribution of price gaps

z with a cumulative distribution function F (z, µ). The corresponding density is denoted
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by f(z, µ) and solves the following Kolmogorov forward equation:

0 = µfz(z, µ) +
σ2

2
fzz(z, µ)

together with boundary conditions f(z(µ), µ) = f(z(µ), µ) = 0, unit mass condition∫ z(µ)

z(µ)
f(z, µ)dz = 1 and continuity at z = ẑ(µ).3

Following the literature, I consider an unexpected permanent nominal shock that

changes the optimal (log) price ln p∗ by δ simultaneously for all firms. The shock shifts the

stationary distribution of price gaps in the opposite direction (because z = ln p− ln p∗), as

illustrated in Figure 1 for δ > 0. The stationary distribution of the price gaps is depicted

by the dashed blue line, whereas the solid red line shows the density immediately after

the shock has arrived, but before firms responded to it. This distribution is referred

to as the initial distribution and is denoted by F0(z, µ). For this type of shock, the

initial distribution is a shifted version of the stationary distribution F (z, µ), such that

F0(z, µ) = F (z + δ, µ).

Figure 1: Aggregate shock δ

Illustration of a positive shock δ > 0 in an economy with positive drift (µ > 0). The dashed blue line is
the stationary density of price gaps f(z, µ), whereas the solid red line is the density immediately after the
shock and before firms adjust, f0(z, µ). The shaded triangle corresponds to the mass of firms that adjust
on impact.

The shaded area corresponds to the mass of firms that are pushed outside the inaction

region and adjust immediately on impact. Their adjustment results in an immediate

change of the aggregate price level, denoted by Θ(δ, µ) and commonly referred to as the

impact effect. Formally, for a positive shock δ > 0, Θ(δ, µ) is given by the following

expression:

Θ(δ, µ) =

∫ z(µ)

z(µ)−δ

(
ẑ(µ)− z

)
f(z+δ, µ)dz (2.1)

3The density f(z, µ) is non-differentiable at the return point ẑ and the Kolmogorov forward equation
does not hold at this point.
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which is simply the sum of all adjustments
(
ẑ(µ) − z

)
weighed with the initial density.

The resulting distribution of price gaps then gradually converges to the stationary one,

inducing a path for aggregate variables. These dynamics are summarized in Figure 2.

Figure 2: Dynamics after an aggregate shock δ

Illustration of aggregate dynamics after positive shock δ > 0 in economy with positive drift (µ > 0). The
solid red line is the realized path of the aggregate log-price P (t), the dashed red line is its hypothetical
path absent of shock P̄ (t). The initial vertical segment of P (t) shows the impact effect Θ(δ, µ). The
shaded area corresponds to the cumulative impulse response M(δ, µ).

The solid red line shows the realized path of the aggregate log-price P (t), whereas

the dashed red line corresponds to its hypothetical path absent of any shock P̄ (t). The

price impulse response at any time t is given by the difference between P (t) and P̄ (t). The

shock arrives at t = 0 and triggers the impact effect Θ(δ, µ), given by the initial vertical

jump of P (t). Another statistic, commonly studied in the literature, is the cumulative

impulse response (CIR), which is shown as the shaded area on the graph and denoted by

M(δ, µ):

M(δ, µ) =

∫ ∞
0

[
δ −

(
P (t)− P̄ (t)

)]
dt

This statistic summarizes the strength and speed of the price response, although in a

reversed way. The stronger and faster firms react to the shock, the smaller M(δ, µ) is.

For example, if the immediate price response Θ(δ, µ) is equal to δ, then the shaded area

in Figure 2 collapses and M(δ, µ) = 0, provided that there are no further fluctuations in

P (t) around the trend. In addition, M(δ, µ) is of special use in a certain class of general

equilibrium models (e.g. Golosov and Lucas (2007)), as it measures the cumulative output

response to a nominal shock δ. Under logarithmic preferences, the output response at

any time t is given by Y (t) = δ −
(
P (t)− P̄ (t)

)
, meaning that output absorbs the part of

the shock that was not captured by the price response.4 Cumulating output responses

4Relaxing logarithmic preferences to a more general case of CES preferences makes output responses
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over time recovers the expression for M(δ, µ), which provides an immediate mapping from

price to output responses and characterizes the real effects of nominal shocks.

Because aggregate price dynamics are determined by the dynamics of the price gap

distribution, one can express M(δ, µ) in the following way:5

M(δ, µ) = −
∫ z(µ)

z(µ)

E
(∫ ∞

0

(
z(t)− x̄(µ)

)
dt

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

where x̄(µ) is the average gap in the steady state
(
x̄(µ) =

∫ z(µ)

z(µ)
zdF (z, µ)

)
. The outer

integrand is the expectation of the cumulated deviations of the price gap z(t) from its

steady state average x̄(µ), given a particular starting value z(0) = z. The integrand is

then averaged across all starting values z, using the distribution of price gaps immediately

after the shock has arrived and firms outside of the inaction region have adjusted, which

is denoted by Fδ(z, µ). This distribution is equal to the stationary one, shifted by δ and

truncated to the inaction region, together with a mass point at ẑ(µ) due to a positive

mass of firms that adjust on impact.

There are several limitations of this framework. Firstly, the quadratic profit function

serves as a second-order approximation to a more general one, e.g., the one resulting

from a CES demand function. Secondly, I ignore any general equilibrium feedback effects

from aggregate dynamics to the optimal policy of firms to ensure that firms follow the

steady state policy along the transition path.6 Both assumptions are crucial for analytic

tractability and are relaxed in Section 4, where I calibrate a general equilibrium model to

the U.S. economy.

The primary interest of this paper is the sensitivity of the impact price effect Θ(δ, µ)

and the cumulative output response M(δ, µ) to changes in trend inflation µ, particularly

for shocks that are not marginal. I briefly review the main properties of Θ(δ, µ) and

M(δ, µ) in a benchmark driftless setting, and then discuss economies with non-zero drift.

2.3 Driftless Benchmark

Driftless economies have been well studied in the literature and serve as an important

benchmark for economies with small drift. In a recent study, Alvarez and Lippi (2019)

characterize the entire impulse response to any initial disturbance for economies without

drift, whereas full characterization with non-zero drift is still a challenge. To allow for

comparability between the setups, I keep the focus on the impact effect and the cumulative

impulse response, and review their main properties in economies without drift.

The absence of drift in the optimal price coupled with a quadratic profit function

proportional to δ −
(
P (t)− P̄ (t)

)
.

5See Appendix A.1 for details.
6Alvarez and Lippi (2014) show that such a setting, these effects are of second order only.
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results in a symmetric optimal policy {z(0), ẑ(0), z(0)} = {−z0, 0, z0}. The return point

ẑ(0) is set to zero and the lower boundary of inaction region z(0) is the negative of the

upper boundary z(0), denoted by z0 to ease notation. Stationary density f(z, 0) becomes

a piecewise linear function with a kink at zero. Solving for the impact effect Θ(δ, 0) of a

positive shock δ > 0 yields the following result (derivation is provided in Appendix A.2):

Θ(δ, 0) =


1

6z2
0
δ2(3z0 + δ), for δ < z0

1
6z2

0

[
δ(6z2

0 + 3δz0 − δ2)− 4z3
0

]
, for δ ∈ [z0, 2z0)

δ, for δ ≥ 2z0

While Alvarez and Lippi (2014) characterize Θ(δ, 0) given small (δ ≤ z0) and large (δ ≥ 2z0)

values of the shock, I also derive an expression for intermediate values. Three key features

of impact effect under zero drift should be highlighted. Firstly, due to symmetries in

optimal policy and stationary density, the impact effect is symmetric for positive and

negative shocks, i.e., Θ(−δ, 0) = −Θ(δ, 0). Secondly, the impact response of aggregate

price never exceeds the shock: |Θ(δ, 0)| ≤ |δ| for all δ. Finally, when a shock is large

(δ ≥ 2z0), the price level responds one-to-one, meaning that Θ(δ, 0) = δ. In general, a

shock is considered ‘large’ if it pushes all firms outside of the inaction region, forcing all

of them to adjust. Therefore, the shock must be larger than the width of the inaction

region z(µ) − z(µ), which in the driftless case is equal to 2z0. Both the average size of

price adjustments E(|∆ ln p|) and the standard deviation of adjustments Std(∆ ln p) are

equal to z0, so that δ is large if it is twice as big as the average adjustment size or exceeds

two standard deviations.

Alvarez, Le Bihan, and Lippi (2016) show that to compute the cumulative output

response M(δ, 0), one does not have to consider the entire path of price gap deviations, as

it is enough to keep track of each firm until the first adjustment. Because of zero drift,

the expected price gap deviation is always zero after the first adjustment. Furthermore,

the steady state average gap x̄(0) is also zero, which gives the following expression for the

CIR:

M(δ, 0) = −
∫ z0

−z0

E
(∫ τ

0

z(t)dt | z(0) = z

)
dFδ(z, 0)

where τ is the first time of adjustment. I provide an expression for M(δ, 0) in Appendix

A.2 and briefly review its main properties below.

Identical to the impact effect, there are three key features to note: (1) CIR is symmetric

around zero in the sense that M(−δ, 0) = −M(δ, 0); (2) The cumulative output response

is non-negative for all δ > 0, meaning that positive nominal shocks either increase output

or are neutral; (3) Large shocks are neutral (M(δ, 0) = 0), because aggregate price adjusts

one-to-one to these shocks on impact and Θ(δ, 0) = δ.

As I show in subsequent sections, none of the main properties of the impact effect
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and the cumulative output response are valid in economies with non-zero drift.

2.4 Introducing Drift

I now study economies with non-zero drift: µ 6= 0. The optimal inaction region of a firm

is no longer symmetric and the return point is not zero. Given that the problem is well

characterized for zero drift, I consider a first-order approximation of the key statistics

around the zero drift point:7

Θ(δ, µ) = Θ(δ, 0) +
∂Θ(δ, 0)

∂µ
µ+ o(µ2)

M(δ, µ) = M(δ, 0) +
∂M(δ, 0)

∂µ
µ+ o(µ2)

This approach is novel, as I compute the first derivatives of aggregate responses with

respect to the drift µ for shocks of any size. To date, the literature has only considered the

effect of drift on responses to marginal shocks, given by cross-derivatives ∂2Θ(δ,µ)
∂δ∂µ

∣∣
δ=0,µ=0

and
∂2M(δ,µ)
∂δ∂µ

∣∣
δ=0,µ=0

. Alvarez, Le Bihan, and Lippi (2016) show that these cross-derivatives are

equal to zero due to the symmetry properties of the model and the assumed differentiability

of Θ(δ, µ) and M(δ, µ) with respect to µ. This result does not require characterizing Θ(δ, µ)

and M(δ, µ) for non-zero levels of drift. On the contrary, such characterization is crucial

for my approach and introduces two challenges.

Firstly, drift µ affects Θ(δ, µ) and M(δ, µ) by altering the stationary distribution of

price gaps and changing the optimal policy (which also feeds into the gap distribution via

boundary conditions). Thus, understanding the effects of drift on aggregate dynamics

requires a characterization of its effects on the optimal policy
{
∂z(0)
∂µ

, ∂ẑ(0)
∂µ

, ∂z(0)
∂µ

}
and

stationary density
(
∂f(z,0)
∂µ

)
.

Secondly, as I show later, non-zero drift introduces an additional term into the

expression for the cumulative output response M(δ, µ), which is not captured when tracking

firms until the first time of adjustment. I provide a way of computing this new term and

generalize the approach of characterizing cumulative impulse responses, introduced by

Alvarez, Le Bihan, and Lippi (2016), to economies with drift and asymmetries.

2.5 Optimal Policy of Firms under Non-Zero Drift

To approximate the optimal policy for the case of non-zero drift, I apply implicit function

theorem to the system of equations that characterize the solution of the firm’s problem,

as discussed in Section 2.1. Proposition 1 states the result and the proof is provided in

Appendix B.

7I use short-hand notation ∂X(δ,0)
∂µ for ∂X(δ,µ)

∂µ

∣∣
µ=0

.
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Proposition 1. Let σ, ρ, κ > 0. Then:

∂z(µ)

∂µ

∣∣∣∣
µ=0

=
∂z(µ)

∂µ

∣∣∣∣
µ=0

> 0 (i)

∂ẑ(µ)

∂µ

∣∣∣∣
µ=0

>
∂z(µ)

∂µ

∣∣∣∣
µ=0

(ii)

The first line states that that boundaries of the inaction region move in parallel to

the right as trend inflation increases. This implies that the width of the inaction region(
z(µ)− z(µ)

)
is insensitive to trend inflation at µ = 0. The second line states that the

return point moves in the same direction, but stronger than the boundaries. Both effects

are due to the desire of the firm to stay close to the profit maximizing zero price gap for as

long as possible. With a positive drift in the optimal price, the price gaps are expected to

fall over time. Therefore, firms move the return point to the right to increase the total time

spent in the vicinity of zero. Firms also tolerate larger positive gaps and delay adjusting

because the gaps are expected to fall on their own. For the same reason, firms adjust

‘sooner’ for negative price gaps, as these are not expected to rise over time. Note that by

taking the limit as ρ→ 0, I recover expressions for the no-discounting case considered in

Alvarez et al. (2019).

The uneven shift of the return point and boundaries leads to asymmetry in individual

adjustments. Denote the size of positive adjustments by ∆+(µ) := ẑ(µ) − z(µ), and of

negative adjustments by ∆−(µ) := z(µ)− ẑ(µ). An immediate implication of Proposition

1 is that ∂∆+(0)
∂µ

= −∂∆−(0)
∂µ

> 0, meaning that positive adjustments become larger as drift

increases, whereas negative adjustments become smaller. Finally, defining asymmetry in

individual adjustments by AI(µ) = ∆+(µ)
∆−(µ)

, obtains:

∂AI(0)

∂µ
=

2

z(0)

∂∆+(0)

∂µ
> 0

This implies that asymmetry in individual price adjustments increases with trend inflation

in the sense that positive adjustments become larger relative to negative adjustments.

While the result might not appear surprising, it is not immediate. When exposed to a

small positive drift, a firm may adjust its behavior entirely via the relative frequency of

price increases and decreases, while keeping adjustments symmetric. Instead, because of a

forward-looking behavior, it chooses to increase its positive adjustments in anticipation of

price erosion due to trend inflation and decrease its negative adjustments for the same

reason. The concerns of firms regarding future dynamics are key here: stronger discounting

weakens the asymmetry, and it is entirely gone in a static model, which is the limit case

as ρ→∞.
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2.6 Impact Effect

Before stating the results for the impact effect, it is instructive to outline the channels

through which drift influences the impact response of the price level. Let us decompose the

impact effect of a positive shock δ, given in equation (2.1), using the definition of positive

adjustments ∆+(µ) = ẑ(µ)− z(µ) and performing variable substitution z → x := z(µ)− z:

Θ(δ, µ) = ∆+(µ)F (z(µ)+δ, µ)︸ ︷︷ ︸
Minimal adjustment

+

∫ δ

0

xf(z(µ)+δ−x, µ)dx︸ ︷︷ ︸
Additional adjustment

(2.2)

If there is a positive shock of size δ, then a total mass F (z(µ)+δ, µ) of agents adjust

immediately, with each of them adjusting by ∆+(µ) at least. This is reflected in the first

term and denoted by ’minimal adjustment’. Because agents are shifted strictly outside

of the inaction region, their actual adjustment is larger. This ‘additional adjustment’

component depends on the position of the agent prior to the shock, is denoted by x and is

captured by the second term. Differentiating Θ(δ, µ) and evaluating at µ = 0 provides the

following expression:

∂Θ(δ, 0)

∂µ
=
∂∆+(0)

∂µ
F (z(0)+δ, 0)︸ ︷︷ ︸

Intensive margin

+ ∆+(0)
dF (z(0)+δ, 0)

dµ
+

∫ δ

0

x
df(z(0)+δ− x, 0)

dµ
dz︸ ︷︷ ︸

Extensive margin

The effect of trend inflation on the immediate price response can be decomposed into two

terms. The first is the effect on the minimal adjustment size, labeled ‘intensive margin’

and driven purely by changes in optimal policy. The second is the effect on the mass of

adjusting agents, labeled as ‘extensive margin’ and driven by changes in the stationary

distribution. Note that stationary density depends on optimal policy, and thus the latter

will indirectly affect the extensive margin as well.8 I provide an expression for ∂Θ(δ,0)
∂µ

in

Appendix A.5 and Proposition 2 states that this derivative is always positive.

Proposition 2. Let σ, ρ, κ > 0. Then for any δ 6= 0:

∂Θ(δ, µ)

∂µ

∣∣∣∣
µ=0

> 0

The result implies that a small positive trend amplifies the responses to positive

shocks and mitigates the responses to negative shocks. Importantly, trend has a first-order

effect on Θ(δ, µ), irrespective of shock size. Define asymmetry for impact effect analogously

8Derivatives of F and f are total (not partial) since both of their arguments depend on µ in (2.2).
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to individual adjustments: AΘ = Θ(δ,µ)
−Θ(−δ,µ)

. It follows that:

∂AΘ(δ, 0)

∂µ
=

2

Θ(δ, 0)

∂Θ(δ, 0)

∂µ
> 0

Therefore, asymmetry in the impact price responses goes up as trend inflation rises, in

the sense that the magnitude of responses to positive shocks increases relative to the

magnitude of responses to negative shocks.

Interestingly, the effect of drift on asymmetry in aggregate price responses does not

vanish as shock size goes to zero:

lim
δ→0

∂AΘ(δ, 0)

∂µ
=

2z0

σ2

This is because the impact effect and its derivative with respect to trend inflation are of

the same order for small shocks.9 Combining a first-order approximation with respect to

drift µ with a second-order approximation with respect to shock δ gives:

Θ(δ, µ) ≈


(
1 + z0

σ2µ
)
Θ(δ, 0) for δ > 0(

1− z0

σ2µ
)
Θ(δ, 0) for δ < 0

This shows that drift has a multiplicative effect on the impact response. For a small

positive drift, the impact effect of a positive shock is increased by 100 · z0

σ2µ percent, whereas

the response to a negative shock is decreased in the same proportion. Therefore, if a shock

is small, ignoring the effect of drift produces an error of the same order as simply setting

the impact response to zero.

One can also compare asymmetry at individual and aggregate levels. At the micro-

level, firms react to shocks as soon as the inaction region boundaries are reached, therefore,

it would be fair to compare the trend effect on individual asymmetry (AI(µ), introduced

earlier) with the trend effect on aggregate asymmetry
(
∂AΘ(δ,0)

∂µ

)
for an aggregate shock δ

approaching zero. The comparison yields:

lim
δ→0

∂AΘ(δ, 0)

∂µ
>
∂AI(0)

∂µ

This follows because the trend effect on aggregate asymmetry consists of extensive and

intensive margins, whereas individual asymmetry is only driven by the latter. These work

in the same direction, amplifying asymmetry at the aggregate level even further.

9Alvarez and Neumeyer (2019) also mention that trend affects the coefficient in front of δ2 in a
second-order approximation of Θ(δ, µ) with respect to δ. Here, I provide an explicit expression for this
interaction term for small values of µ.
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2.7 Cumulative Impulse Response

An extremely useful result for cumulative impulse responses in driftless economies is that

one only has to keep track of price gaps until the first adjustment. Unfortunately, this

result does not hold in economies with non-zero drift. Explicitly writing an infinite-horizon

CIR as a limit of a finite-horizon CIR reveals that cumulative responses until finite horizon

t have an additional ‘tail’ term, which represents cumulative deviations between the time

of the last adjustment and period t. This tail term does not vanish in the limit and is not

equal to zero in expectation. In the following, I derive an extension of the CIR formula

for economies with non-zero drift in a more general setting, which might be useful for

purposes beyond the scope of this paper.

Following Alvarez and Lippi (2019), I let z(t) be an individual process on Z = [z, z],

endowed with the strong Markov property and a stationary distribution F (z). I denote by

g : Z → R a bounded, Borel-measurable function of interest. Suppose the economy is in a

steady state. In period t = 0, an aggregate shock distorts the distribution of z, such that

distribution in t = 0 is given by F0(z). One can express the impulse response t periods

after as follows:

IRF (t, F0) =

∫ z

z

E
(
g(z(t))− ḡ | z(0) = z

)
dF0(z) where ḡ =

∫ z

z

g(z)dF (z)

Therefore, IRF (t, F0) is the period t economy-wide average deviation of g from its steady

state average ḡ if z was initially distributed according to F0(z). Denote by CIRF (t, F0)

the cumulative impulse response up to period t:

CIRF (t, F0) =

∫ t

0

IRF (s, F0)ds

Switching the order of the integration and taking the expectation operator out of the inner

integral yields:

CIRF (t, F0) =

∫ z

z

E
(∫ t

0

(g(z(s))− ḡ)ds | z(0) = z

)
dF0(z)

One can first compute expected cumulative deviation of g from its steady state until

t for each starting value z and then average across all starting values using the initial

distribution function F0. The statistic of interest is the infinite-horizon cumulative IRF:

CIRF (F0) = lim
t→∞

CIRF (t, F0) =

∫ z

z

E
(∫ ∞

0

(g(z(s))− ḡ)ds | z(0) = z

)
dF0(z)
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2.7.1 Cumulative Impulse Responses in Impulse Control Models

Now consider a special case for the process z(t), namely the one resulting from an impulse

control problem with a fixed return point ẑ, as in the model considered in this paper. The

next proposition characterizes CIRF (F0) as a sum of two terms: the familiar expected

deviation until the first adjustment and the new tail term.

Proposition 3. Denote by m(z) the expected cumulative deviation of g from its steady

state ḡ until the time of the first adjustment τ , conditional on the initial value z(0) = z:

m(z) = E
(∫ τ

0

(g(z(s))− ḡ)ds

∣∣∣∣ z(0) = z

)
Let n(t) be the number of adjustments between time 0 and t, so that τn(t) denotes the time

of the last adjustment before t. Then:

CIRF (F0) =

∫ z

z

m(z)dF0(z) + lim
t→∞

E

(∫ t

τn(t)

(g(z(s))− ḡ)ds

)

Function m(z) is similar to the one used to compute the cumulative IRF under zero

drift. This function provides the expected cumulative deviation of g from its steady state

ḡ until the time of the first adjustment and can typically be defined with an ordinary

differential equation.

To understand the new term, consider the cumulative response until some large finite

time t. Each agent will have a certain number of adjustments, made until that period,

denoted by n(t), and the cumulative response can be split into periods before the first

adjustment, in between adjustments and after the last adjustment:

∫ t

0

(g(z(s))−ḡ)ds =

∫ τ1

0

(g(z(s))−ḡ)ds+

n(t)∑
i=2

∫ τi

τi−1

(g(z(s))−ḡ)ds+

∫ t

τn(t)

(g(z(s))−ḡ)ds

The idea of the proof is that when taking expectations and letting t → ∞, the first

term becomes the function m(z), terms in the middle vanish as shown by Baley and

Blanco (2020), and the last term converges to some number, which is not necessarily

zero. Deviations sum up to zero in expectation if they are considered strictly in between

adjustment times, as in the middle terms. This does not apply to the last term, which

cumulates deviations between an adjustment time and some arbitrary t, given that the

next adjustment occurs after t.

In fact, for the model considered in this paper and g(z) = z, this tail term is equal to

zero if and only if µ = 0. This is because if µ 6= 0, then the return point ẑ is not equal

to the average gap x̄ =
∫ z
z
zdF (z), which implies that the expected cumulative deviation

between the last time of adjustment τn(t) and arbitrary t is not equal to zero. For example,
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if t is very close to τn(t), then for any time s ∈ (τn(t), t), z(s) is very close to the return

point ẑ in expectation, and thus relatively far from the average gap x̄, so that the expected

cumulative deviation E
( ∫ t

τn(t)
(z(s)− x̄)ds

)
is non-zero.

2.7.2 Computing the Tail Term

Unlike the cumulative response until the first adjustment, the tail term does not allow

for an immediate characterization. However, there are at least two ways of dealing with

this issue. The first one relies on the fact that the new term does not depend on the

initial distribution F0, as it considers paths after the first adjustments. These paths are

independent of the initial condition due to the strong Markov property of z(t). Note that

setting the initial distribution F0 equal to the stationary distribution F results in zero

impulse response by definition:

CIRF (F ) =

∫ z

z

m(z)dF (z) + lim
t→∞

E

(∫ t

τn(t)

(g(z(s))− ḡ)ds

)
= 0

This allows to obtain an expression for the limit term and express the cumulative response

as follows:

Corollary 1.

CIRF (F0) =

∫ z

z

m(z)dF0(z)−
∫ z

z

m(z)dF (z)

When there is no drift, the inaction region is symmetric (z = −z), F (z) is a symmetric

distribution, and m(z) exhibits negative symmetry (m(−z) = −m(z)). These imply that∫ z
z
m(z)dF (z) = 0 and CIRF (F0) =

∫ z
z
m(z)dF0(z). Therefore, one only needs to track

each agent until the first time of adjustment to compute the entire cumulative response.

However, if drift is non-zero, one can still consider paths until the first adjustment, but must

additionally subtract the average cumulated deviation under the stationary distribution.

The second approach uses the notion of a discounted cumulative impulse response:

DCIRF (r, F0) = lim
t→∞

DCIRF (r, t, F0) =

∫ ∞
0

e−rsIRF (s, F0)ds

which allows to eliminate the tail term for any r > 0. Then, the usual CIR can be expressed

as a limit case of its discounted counterpart:

CIRF (F0) = lim
r→0

DCIRF (r, F0)

This approach substitutes the inconvenient tail term with a more tractable one, and the

next proposition provides the result.

Proposition 4. Denote by m(r, z) the expected discounted cumulative deviation of g from
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its steady state until the time of the first adjustment τ , conditional on initial value z(0) = z:

m(r, z) = E
(∫ τ

0

e−rs(g(z(s))− ḡ)ds

∣∣∣∣ z(0) = z

)
Then:

CIRF (F0) =

∫ z

z

m(0, z)dF0(z) +
1

E
(
τ
∣∣ z(0) = ẑ

) lim
r→0

m(r, ẑ)

r

Here, the first term is the same as before, since trivially m(0, z) = m(z), whereas the

second term provides an alternative way of computing the tail term from Proposition 3.

The first approach from Corollary 1 uses all familiar objects but requires computing

the integral of m(z) twice – under initial and stationary distributions. Using the second

approach from Proposition 4, one needs to compute an additional function m(r, z), which

can typically be defined with an ordinary differential equation, similar to m(z). Therefore,

each approach may be more or less preferable, depending on the application. For example,

if one deals with shocks that shift the stationary distribution (as in this paper), then the

first approach provides a much easier way of computing CIR because F0 inherits the shape

of F . On the other hand, if the initial distribution is not related to the stationary one, it

might be more convenient to analyze CIR using the second approach, as it only requires

computing the integral under F0 (although F is still required to compute the steady state

average ḡ).

To determine whether the tail term is qualitatively important and whether one can

omit it for simplicity, recall that it neither depends on the initial distribution F0 nor

interacts with it. This implies that it corrects for the level of the cumulative response,

acting as an intercept. Therefore, omitting it not only changes the CIR value, but may

also flip its sign if the true value is sufficiently close to zero. In the next section, I discuss

the special importance of the tail term for cumulative responses to δ shocks considered in

this paper.

2.7.3 Application to δ Shocks

A δ shock considered in this paper shifts the stationary distribution F in parallel. The

initial distribution F0 is given by the stationary distribution F , shifted by δ and truncated

to the inaction region, together with a mass point at ẑ, which is due to firms that adjust

on impact. As noted earlier, it is most convenient in this situation to use Corollary 1 for

computing the cumulative response, so that for δ > 0 it is given by:

CIRF (δ) =

∫ z−δ

z

m(z)dF (z+δ) +m(ẑ)F (z+δ)︸ ︷︷ ︸
=0

−
∫ z

z

m(z)dF (z) (2.3)

where m(ẑ) = 0, as shown in Baley and Blanco (2020). Note that the tail term does

not affect the slope of CIRF(δ), which is entirely determined by cumulative deviations
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until the first adjustment, captured in the first term. Instead, it shifts the entire function,

which has special importance for very small and very large shocks. If δ = 0, then ignoring

the tail term would give that CIRF (0) =
∫ z
z
m(z)dF (z), which may not be equal to zero,

implying a ‘response’ despite the absence of a shock. If δ is large, so that δ ≥ (z − z),
then the first term in (2.3) vanishes, and the CIR is entirely determined by the tail term.

Omitting the tail term would imply that CIRF (δ) = 0 for all δ ≥ (z − z), whereas it

might be different from zero.

2.8 Sensitivity of the Cumulative Impulse Response to Drift

I now use results from the previous section to study the sensitivity of the cumulative

output response to drift µ. Recall from section 2.2 that it is given by:

M(δ, µ) = −
∫ z(µ)

z(µ)

E
(∫ ∞

0

(z(t)− x̄(µ)) dt

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

where x̄(µ) =
∫ z(µ)

z(µ)
zdF (z, µ). Using Corollary 1 and writing M(δ, µ) as in (2.3) yields:

M(δ, µ) =

∫ z(µ)−δ

z(µ)

m(z, µ)f(z+δ, µ)dz −
∫ z(µ)

z(µ)

m(z, µ)f(z, µ)dz

where

m(z, µ) = −E
(∫ τ

0

(z(t)− x̄(µ))dt

∣∣∣∣ z(0) = z

)
Function m(z, µ) solves the following differential equation: z − x̄(µ) = −µmz(z, µ) +

(σ2/2)mzz(z, µ) with boundary conditions m(z(µ), µ) = m(z(µ), µ) = 0. Proposition 5

states that drift has a first-order effect on the cumulative output response, irrespective of

the shock size.

Proposition 5. Let σ, ρ, κ > 0. Then for any δ 6= 0:

∂M(δ, µ)

∂µ

∣∣∣∣
µ=0

< 0

In accordance with the results on impact effect Θ(δ, µ), trend inflation amplifies price

responses to positive shocks and thus mitigates responses of output, which is reflected

by the negative sign of the derivative. The reverse is true for negative shocks, as in this

case output responses are amplified. Note that the tail term is crucial for this result,

without it, the derivative is positive for small shocks, zero for large shocks and negative

for intermediate values.

Define asymmetry in CIR as a difference in magnitudes of responses to positive and

negative shocks: AM(δ, µ) = M(δ, µ)− (−M(−δ, µ)). Here, I am using difference instead

of ratio in order to ensure that asymmetry is well-defined for shocks of any size because
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M(δ, 0) = 0 for all δ such that |δ| > 2z0. It is, however, also possible to define it as a ratio,

provided M(δ, µ) > 0 and M(−δ, µ) < 0. It follows immediately that:

∂AM(δ, 0)

∂µ
= 2

∂M(δ, 0)

∂µ
< 0

Therefore, cumulative output responses to positive shocks become smaller relative to

cumulative output responses to negative shocks as trend inflation increases.

To determine whether the drift effect is sizable, I combine a first-order approximation

of M(δ, µ) with respect to µ and a second-order approximation with respect to δ:

M(δ, µ) ≈


(
1− |δ|

σ2µ
)
M(δ, 0) for δ > 0(

1 + |δ|
σ2µ
)
M(δ, 0) for δ < 0

Cumulative output response is amplified by 100 · |δ|
σ2µ percent if a shock is negative and

mitigated in the same proportion for a positive shock. Thus, for small shocks, the drift

effect is negligible, but it becomes more important as the shock size increases. For large

shocks, the drift might not only amplify or mitigate output responses, but also change

their sign. This result is discussed and formalized in the following section.

2.9 Large Shocks

The drift effect is of particular importance for large shocks. As noted previously, in the

driftless case, the price level reacts one-to-one to a large nominal shock on impact, which

results in monetary neutrality, i.e., output is not affected by the shock. These results

break down when trend inflation is non-zero.

To see why this occurs, consider a positive shock δ that is large in the sense that it

shifts the entire distribution outside of the inaction region (δ ≥ z(µ)− z(µ)). The impact

effect for this shock is given by:

Θ(δ, µ) = δ + ẑ(µ)− x̄(µ) where x̄(µ) =

∫ z(µ)

z(µ)

zf(z, µ)dz

The entire distribution of price gaps is initially shifted to the left by δ, and the mean

price gap immediately after the shock and before the adjustment becomes x̄(µ) − δ.

Because all firms are pushed outside the inaction region, the aggregate adjustment equals

ẑ(µ)− (x̄(µ)− δ), which gives the impact effect. When µ = 0, both the average gap x̄(0)

and the return point ẑ(0) are zero, and thus the impact effect is equal to the shock, meaning

that the aggregate price responds one-to-one. If trend inflation is positive (µ > 0), then

ẑ(µ) > 0 and x̄(µ) < 0, which leads to price overreaction: Θ(δ, µ) > δ. Note that if the

shock is negative and δ ≤ −|z(µ)− z(µ)|, then |Θ(δ, µ)| < |δ| and there is no overreaction.
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All of the above has implications for the cumulative output response M(δ, µ). Proposition

6 formalizes the results.

Proposition 6. Let σ, ρ, κ > 0, µ > 0 and sufficiently small.

Then there exist δΘ(µ), δM(µ) > 0 such that δΘ(µ), δM(µ) < z(µ)− z(µ) and:

Θ(δ, µ) > δ for all δ > δΘ(µ)

M(δ, µ) < 0 for all δ > δM(µ)

Proposition 6 states that if trend inflation is positive and small, then there exist

thresholds δΘ(µ) and δM (µ) such that price overreacts on impact to any positive shock larger

than δΘ(µ) and the cumulative output response is negative for any positive shock larger

than δM(µ).10 The latter implies that positive shocks eventually become contractionary

if trend inflation is positive. Crucially, the thresholds are both strictly smaller than the

width of the inaction region z(µ)− z(µ). Therefore, a positive shock does not have to shift

the entire distribution outside of the inaction region to induce price overshooting and a

decline in output when trend inflation is positive, as these effects are already achieved for

smaller shocks.

2.10 Summary and Comparison with the Driftless Case

I conclude this section by illustrating the main analytical results of the paper. Figure 3

plots the impact price response Θ(δ, µ) (left panel) and the cumulative response of output

M(δ, µ) (right panel) against different values of the δ shock, normalized by the width of

the inaction region.11 I also normalize the impact effect to maintain comparability with

the size of the shock. The solid blue lines correspond to the driftless case µ = 0, and

the red dashed lines correspond to µ = 0.1. Recall the three properties of the impact

effect and the cumulative output response under zero trend inflation, discussed in section

2.3: (1) both statistics are symmetric for positive and negative shocks, (2) the size of the

impact effect Θ(δ, 0) is always weakly smaller than the shock size, and cumulative output

response M(δ, 0) to positive shocks is always weakly positive, and (3) if |δ| is larger than

the width of inaction region (z− z), then Θ(δ, 0) = δ and M(δ, 0) = 0. All these properties

are illustrated in Figure 3 by the solid blue lines.

Now consider the case of positive trend inflation. The responses to positive and

negative shocks are asymmetric, so that the first property does not hold anymore. The

impact price responses to positive shocks are amplified, whereas the responses to negative

shocks are mitigated compared to the driftless benchmark. This can be seen on the left

panel, as the dashed red line lies above the solid blue one. The opposite is true for the

10Alvarez and Neumeyer (2019) show that price response exceeds the shock on impact if µ→∞ and
provide numerical examples when this happens for finite values of µ.

11Both statistics are exact values and not first-order approximations with respect to drift µ.
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Figure 3: Impact and Cumulative Responses
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Left panel: impact price response Θ(δ, µ), right panel: cumulative output response M(δ, µ). X-axis: shocks
δ normalized by the width of the inaction region z − z. Impact effect Θ(δ, µ) is also normalized by z − z
for comparability of x- and y-axes. Solid blue lines: µ = 0, dashed red lines: µ = 0.1. The tail term is
denoted by T on the right panel. Rest parameter values: σ2 = 0.05, ρ = 0.05, κ = 0.05. Threshold values:
δΘ(0.1) = 0.64(z − z) and δM (0.1) = 0.55(z − z).

cumulative output responses, which become stronger after negative shocks and weaker

after positive ones as trend inflation rises. This is depicted on the right panel, where the

dashed red line lies below the solid blue one.

Furthermore, large positive shocks lead to price overreaction on impact and cause neg-

ative cumulative output responses, which invalidates both the second and third properties.

Proposition 6 states that there are two thresholds, δΘ(µ) and δM(µ), such that shocks

larger than these thresholds cause price overshooting and output contraction, respectively.

The former is determined by the intersection of the red dashed line and a 45◦ line on the

left panel of Figure 3, where Θ(δ, µ) = δ. The latter threshold corresponds to the point

where the dashed red line crosses zero on the right panel of Figure 3 for a positive shock δ,

so that δ > 0 and M(δ, µ) = 0. Numerical computation yields that δΘ(0.1) = 0.64(z − z)
and δM(0.1) = 0.55(z − z). Therefore, when µ = 0.1, any shock δ larger than 64% of the

width of the inaction region causes price overshooting on impact and any shock larger

than 55% of the width of the inaction region leads to a cumulative contraction in output.

The higher the trend inflation, the harder it is to stimulate output, as even medium-size

positive nominal shocks have a reversed effect. The threshold for the reversed effect on

output is smaller than the threshold for price overshooting. Thus, there is a range of shocks

(55% - 64% of the width of the inaction region) for which cumulative output response is

negative, even though price level responds less than one-to-one on impact. On the contrary,

negative shocks never lead to an expansion in output and price overshooting. The price
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level always underreacts to negative shocks on impact and the cumulative output response

is always negative if trend inflation is positive.

I lastly note the role of the tail term that appears in the expression for the cumulative

output response when trend inflation is non-zero. As discussed in section 2.7, the CIR is

entirely determined by this term if |δ| ≥ (z − z). Therefore, one can directly see the tail

term in Figure 3, where it is denoted by T on the right panel. Not only is it quantitatively

important, but it is also the only source of difference between the cases of positive and

zero trend inflation.

3 Empirical Evidence

In this section I test several predictions of the model derived above. I start with the effect

of trend inflation on aggregate responses to shocks, as these are the main focus of the

paper. However, a substantial part of the mechanism operates via changes in firm behavior

induced by the presence of drift. Therefore, I also provide evidence for the relationship

between drift and asymmetry in micro-level adjustments. As I show, many of the micro-

and macro-level implications of the theory are supported by the data.

3.1 Drift and Asymmetry at the Macro Level

I start by testing whether trend inflation affects asymmetry in aggregate responses to

monetary shocks. I use monthly sectoral data on Producer Price Index (PPI) provided by

the Bureau of Labor Statistics, as well as data on Industrial Production (IP) provided

by the Federal Reserve System. To estimate impulse responses I use local projections

as in Jordà (2005). This approach has been widely utilized in the literature to test for

asymmetries, non-linearities and state-dependence of impulse responses (Auerbach and

Gorodnichenko (2012), Ramey and Zubairy (2014), Tenreyro and Thwaites (2016)). The

main advantage of local projections is the ease of inclusion of non-linear terms, which

are of central interest in this paper. The baseline shock measure is the one computed by

Jarociński and Karadi (2020) using high frequency identification and separating monetary

policy shocks from central bank information shocks. In Appendix C.4 I show that results

are generally robust to alternative shock measures.

The central idea is to exploit cross-sectoral heterogeneity in trend inflation to see

whether it relates to asymmetry in production and price responses. To ensure that impulse

responses for every subset of industries are estimated on the same set of shocks, I use a

balanced panel. The sample spans between February 1990 and January 2013 and consists

of 52 industries.12 I provide more details on data construction and properties of IP and

12Even though interest rates have stayed low in 2009 – 2013, this period is still informative as it features
both positive and negative monetary shocks (see Figure 15 in Appendix C.3). Considering the period
until June 2008 does not alter the main results.
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PPI In Appendix C.1.

3.1.1 Asymmetric Responses

The simplest way of introducing asymmetry is estimating piecewise linear impulse responses

with a kink at zero by including positive and negative shocks separately in the regression.

To avoid ambiguity, I will refer to interest rate cuts (monetary easing) as ‘positive’ shocks,

whereas to interest rate hikes (monetary tightening) as ’negative’ shocks. Thus, the sign

of a shock corresponds to the intended effect on output, which provides the following

non-linear panel local projection:

yi,t+h − yi,t−1 = αi,h + βPh max(εt, 0) + βNh min(εt, 0) + γ′hxi,t + νi,t+h (3.1)

where yi,t+h − yi,t−1 is the growth rate of the dependent variable (IP or PPI) between

t − 1 and t + h in industry i, αi,h is an industry fixed effect, εt is the monetary policy

shock, and xi,t is a vector of controls. This specification directly estimates cumulative

impulse responses. The monetary shocks are scaled and normalized such that positive

values correspond to interest rate cuts and a shock of size one represents a one standard

deviation shock. Here, βPh provides the impulse response to a one standard deviation

positive shock h periods after impact, and (−βNh ) is the response to a negative shock of

the same size. Note that the standard theory predicts that βPh > 0 and βNh > 0. The set

of controls includes a time trend, contemporaneous and lagged growth rates of aggregate

industrial production and of a commodity price index, as well as lags of the monetary

shock, effective federal funds rate, and industry-specific growth rates of IP and PPI. I set

the lag length to 6 months and also include contemporaneous industry-specific growth rate

of IP in the PPI projection and vice versa.13 Finally, I smooth impulse responses with a

5-month centered moving average when plotting them, in order to ease comparisons.14

The preferred measure of asymmetry is the ratio between the magnitudes of responses

to positive and negative shocks, given by βPh /β
N
h , because it controls for the size of an

average (linear) response. Values below one indicate that positive shocks have a smaller

effect relative to negative shocks, and larger deviations from one correspond to stronger

degrees of asymmetry. However, this measure is only meaningful if both βPh and βNh
are positive. Whenever this condition is violated, I have to use an alternative measure,

defined as a difference in magnitudes (βPh − βNh ). In this case, negative values indicate

that monetary tightening has stronger effects compared to monetary easing.

13The set of controls is standard, and I consider a much smaller set of controls as a robust-
ness check in Appendix C.4.6. The commodity price index is the one produced by the Commod-
ity Research Bureau and used in Coibion (2012) (data taken from the website of Valerie Ramey
https://econweb.ucsd.edu/∼vramey/research.html#data)

14This is a common practice in the literature, it does not affect the results, and the unsmoothed plots
are presented in Appendix C.4.6.
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As a first step, I estimate (3.1) on the entire sample. Figure 4 plots the impulse

responses of industrial production (top row) and PPI (bottom row) to one standard

deviation monetary shock,15. The dashed red lines depict responses to negative shocks

(−βNh ), whereas the solid blue lines show the negatives of responses to positive shocks

(−βPh ) to ease comparison. In the right column, I plot asymmetries in responses to positive

and negative shocks. I employ the preferred measure of asymmetry (ratio) for industrial

production, but have to use the alternative (difference) for PPI because these responses

switch signs.

Industrial production exhibits a strong and significant degree of asymmetry, with

negative shocks having a much larger effect on IP than positive shocks. At the horizon of

12 months, a one standard deviation negative shock has a five times stronger effect on

production than a positive shock of the same size. There is less evidence for asymmetry in

PPI responses, although at longer horizons negative shocks tend to cause larger responses

than positive ones. The previous literature has focused on asymmetries at the aggregate

level, and similar patterns have been documented by Angrist, Jordà, and Kuersteiner

(2018) and Tenreyro and Thwaites (2016), among others. Results in Figure 4 suggest that

asymmetries found in aggregate data are also present at the sectoral level. I now turn to

the interaction between trend inflation and asymmetry in responses.

To determine whether asymmetry is affected by trend inflation, I compute trend

inflation for each industry as an average PPI growth rate over the entire period, and split

the sample into two groups: industries with trend inflation above and below the median.16

The ‘low’ inflation group has an average (median) trend inflation of 1.79% (1.85%) p.a.,

whereas for the ‘high’ inflation group the numbers are 3.44% and 3.22% respectively.

For the next step, I estimate (3.1) separately for each group. Figure 5 summarizes

the results for industrial production (top row) and PPI (bottom row). The first column

provides responses of industries with trend inflation below the median, whereas the second

column shows those with trend inflation above the median. As before, I plot negatives

of responses to positive shocks to ease comparison. The third column compares the

asymmetry between responses to positive and negative shocks in the two groups. Again,

I employ the preferred measure (ratio) for industrial production and have to use an

alternative (difference) for PPI. The solid green lines correspond to the high trend inflation

group, the dashed yellow lines represent the low trend inflation group, and the dotted

black lines show asymmetry in the entire sample.

Firstly, PPI in the low inflation industries exhibits negative asymmetry, whereas in

the high inflation industries asymmetry is predominantly positive. Sectors with low trend

inflation do not raise prices after positive shocks, but decrease them substantially after

15In the sample, monetary shocks have a standard deviation of 4.8 basis points.
16In addition, I omit the top and bottom 2.5% of industries in terms of trend inflation from the original

sample in order to control for outliers. Results are robust to a more conservative trimming, as well as to
using the entire sample (see Appendix C.4.4).
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Figure 4: Piecewise Linear Cumulative Impulse Responses, Entire Sample

−3

−2

−1

0

0 5 10 15 20 25
Month

%

(−)Easing
Tightening

Whole Sample IRF

0.0

0.4

0.8

1.2

5 10 15 20 25
Month

ra
tio

Asymmetry (βP βN)

Industrial Production

−0.6

−0.3

0.0

0.3

0 5 10 15 20 25
Month

%

Whole Sample IRF

−0.5

0.0

0 5 10 15 20 25
Month

p.
p.

Asymmetry (βP − βN)

PPI

Impulse responses of industrial production (top row) and PPI (bottom row) to one standard deviation
monetary shock, estimated on the entire sample. Piecewise linear specification as in (3.1). Dashed red
lines: responses to a negative shock, solid blue lines: negatives of responses to a positive shock. Right
column: asymmetry in responses, measured as the ratio of magnitudes for IP (positive over negative)
and as the difference in magnitudes for PPI (positive minus negative). The shaded areas correspond to
68% confidence intervals, based on Newey-West standard errors. The standard errors for asymmetry are
computed by the delta method.

negative ones. The opposite is observed for industries with high trend inflation: in the

first year after impact, positive shocks have a much larger effect than negative shocks,

whereas at longer horizons effects are not significantly different. These findings are in

line with the theoretical predictions of this paper: higher trend inflation amplifies price

responses to positive shocks and mitigates reaction to negative shocks.

Secondly, there is a substantial difference in the asymmetry of industrial production

responses between the two groups. In the low inflation sectors, positive shocks have a

strong and significant effect on IP, whereas among sectors with high trend inflation their

effect is more than halved and barely significant. Negative shocks also have a smaller

but nevertheless pronounced and significant effect in the latter sample. This indicates

that higher trend inflation is related to overall weaker effects of monetary shocks on

industrial production, which is also found by Ascari and Haber (2020) in aggregate data,

who use time variation in trend inflation. However, this drop in overall policy potency is

disproportionately split between positive and negative shocks, as shown in the third panel,

depicting asymmetry.

In both groups, the ratio between the magnitudes of responses to positive and negative

shocks lies below one, but is much smaller for industries with high trend inflation. For

example, compare the asymmetries at a 12-month horizon. In the low inflation group,
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Figure 5: Piecewise Linear Cumulative Impulse Responses for Low and High Trend
Inflation Industries
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interest rate cuts cause a three times weaker response than interest rate hikes. In the

high inflation group, the impact of positive shocks is more than 10 times weaker than the

impact of negative shocks. Although the difference between the two groups is significant

only at medium term horizons, there is a clear and consistent distance between the point

estimates at all horizons. This is in line with the theoretical prediction of the model, which

states that trend inflation reduces the relative strength of positive shocks on output.

3.1.2 Asymmetry and Shock Size

So far I estimated piecewise linear impulse responses, focusing on asymmetry in reactions

to positive and negative shocks, irrespective of their size. The theoretical results, however,

highlight the importance of non-linearities and their interactions with trend inflation. The

size of a shock is especially important for output responses. While price reaction in the
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model is always increasing in the shock size, the output response is non-monotonic, i.e., it

grows for small shocks and falls when shocks are large. In the latter case, trend inflation

plays a special role, as large positive shocks may lead to contractions in output under

positive trend inflation. To determine whether this holds empirically, I now add non-linear

terms to local projections for industrial production.

To allow for non-monotonicity of production impulse responses for both positive and

negative shocks, at least a third-order polynomial is required.17 I estimate the following

non-linear panel local projection:

IPi,t+h − IPi,t−1 = αi,h + β1hεt + β2hε
2
t + β3hε

3
t + γ′hxi,t + νi,t+h (3.2)

where IPi,t+h − IPi,t−1 is the growth rate of industrial production between t− 1 and t+ h,

αi,h is an industry fixed effect, εt is the monetary policy shock and xi,t is a vector of

controls, which is the same as before.

Firstly, I plot the impulse responses to one standard deviation positive and negative

shocks in Figure 6 to determine whether the findings of the previous section are robust to

an alternative projection specification. The results closely resemble those obtained using

piecewise linear local projections, depicted in Figure 5.

Figure 6: Non-Linear Cumulative Impulse Responses of Industrial Production
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as in (3.2). Dashed red lines: responses to a negative shock, solid blue lines: negatives of responses to a
positive shock. Third panel: asymmetry in responses, measured as the ratio of magnitudes (positive over
negative). Solid green line: industries with trend inflation above the median, dashed yellow line: below the
median, dotted black line: entire sample. The shaded areas correspond to 68% confidence intervals, based
on Newey-West standard errors. The standard errors for asymmetry are computed by the delta method.

Secondly, making use of non-linearity, I plot the impulse responses for 6-, 12- and

24-months horizons for different shock values in Figure 7. The x-axis corresponds to the

17In addition, a second-order polynomial would always result in larger degrees of asymmetry for larger
shocks. In Appendix C.4.5 I show that the results are robust to including higher order terms.
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shock values between -2 and 2 standard deviations. The y-axis shows the impulse responses

as functions of the shock value. The left panel depicts the impulse responses 6 months after

impact, which are close to linear for both groups, but already exhibit small asymmetry. At

the 12-months horizon, asymmetry strengthens, especially for the high inflation group. In

these industries, positive shocks have a very small impact on production, whereas negative

shocks lead to substantial responses. Therefore, production responses to positive shocks

estimated on the entire sample are almost entirely driven by industries with low trend

inflation. In addition, the curve in the high inflation group bends toward zero as positive

shocks become larger, which does not happen among sectors with low trend inflation.

Figure 7: Non-Linear Cumulative Impulse Responses of Industrial Production
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Impulse responses of industrial production at 6-, 12-, and 24-months horizons. Shock values are on the
x-axis, measured in standard deviations. Solid green lines: industries with trend inflation above the
median, dashed yellow lines: below the median, dotted black lines: entire sample. The shaded areas
correspond to 68% confidence intervals, based on Newey-West standard errors, computed by the delta
method.

At the 24-months horizon, production falls after large positive shocks in the high

inflation sectors, but its response remains positive in the low inflation group. In contrast,

negative shocks always lead to output contractions in both groups, even though the

polynomial permits reversals for both positive and negative shocks simultaneously. This

shape of the impulse response curve persists as I increase polynomial order, allowing for

more flexibility, and is a robust feature of the data.

Altogether, the results show that trend inflation is more strongly related to asymmetry

in responses to large shocks, than to small ones. Furthermore, I find evidence for the

reverse effects of large positive shocks on production, as predicted by the model. Most

importantly, these reversals are affected by trend inflation, i.e., the size of a positive shock

leading to zero production response is substantially smaller in industries with high trend

inflation than in those with low trend inflation. Even though these results can not be

interpreted in a causal sense, they show that many of the model predictions are in line the
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data.

3.1.3 Robustness

I show that findings discussed above are robust to several important deviations from the

baseline strategy considered so far. I briefly outline the alternatives and provide the results

in Appendix C.4.

Alternative shock measures. In the baseline specification I use a measure of

monetary policy shocks, computed by Jarociński and Karadi (2020) using high frequency

identification and separating monetary policy shocks from central bank information shocks

using sign restrictions. I show that the results are generally robust to alternative shocks

measures, commonly used in the literature. Firstly, I consider Jarociński and Karadi

(2020) shock series based on a simpler separating procedure, the so called ‘poor man’s

sign restrictions’, as well as the original shock series, computed by Gertler and Karadi

(2015). Secondly, I employ other widely used high-frequency identified shocks, estimated by

Barakchian and Crowe (2013) and Nakamura and Steinsson (2018). Figure 16 shows that

the main results of the paper are in general robust to these alternative shock measures.

Measurement error in trend inflation. I estimate trend inflation at the sector

level by an average PPI growth rate, which can be contaminated by a measurement error.

However, I only use trend inflation to classify sectors into below and above median groups.

Thus, the only way measurement error might affect the results is by distorting the ordering

of sectors by trend inflation and leading to misclassification. To address this issue, I omit

the middle 40% of sectors and compare the top 30% with the bottom 30%. Because sectors

with trend inflation that is close to the median are much more likely to be misclassified,

excluding them alleviates the problems associated with measurement error. Figures 17

and 18 show that results are robust to such a split.

Great Recession and ZLB. The baseline sample spans the period between February

1990 and January 2013, which includes the apex of the Great Recession and the subsequent

period of low interest rates. As a robustness check, I consider a shorter sample period

ending in June 2008. Figures 19 and 20 show that excluding the Great Recession and the

ZLB period only strengthens the main results of paper.

Trimming the data. In the baseline scenario I omit the top and bottom 2.5% of

sectors in terms of trend inflation from the original sample to control for potential outliers.

This choice does not affect the results of the paper, with Figures 21 - 24 showing that the

main findings are robust to trimming the top and bottom 15%, as well as to using the

entire sample.

Polynomial degree. When testing for non-linearity of industrial production re-

sponses, I use a third order polynomial because it is the minimal degree that allows for

non-monotonicity of impulse responses with respect to both positive and negative shocks.

As a robustness check, I provide the results for the 4th, 5th and 6th order polynomials in

31



Figure 25, which shows that the effect of trend inflation on responses to large shocks does

not depend on the degree of a shock polynomial.

Other. Finally, I set the number of lags to 3 and 12 (baseline specification has 6 lags)

and reduce the set of controls, only keeping a time trend and lags of the dependent variable,

monetary shock, and effective federal funds rate. In addition, I provide the unsmoothed

impulse responses. Figure 26 shows that the main findings remain unchanged.

3.2 Drift and Micro Level Asymmetry

In this section I show that trend inflation induces asymmetry in individual price adjust-

ments, as follows from Proposition 1.18 Working with price adjustments is a challenge

because only continuous tracking of the price of an item can ensure that one observes

adjustments as opposed to growth rates, which can consist of multiple adjustments. In

addition, growth rates are functions of both adjustment size and frequency, so that any

observed asymmetry in growth rates can be driven by the asymmetry in adjustment

frequencies.

To address these issues, I use scraped daily data from the Billion Prices Project

by Cavallo (2018). Under the assumption that prices do not change more than once a

day, daily data provides the desired price adjustments. This assumption is much milder

compared to those required for monthly or even weekly data. I focus on U.S. supermarket

data (store 1), as it provides the longest time series, and consider items with at least

2 years of observations and at least 10 price adjustments. In addition, I exclude items

that have adjustments larger than 50% to control for the outliers. The sample period

is between May 2008 and July 2010, and the total number of items used in the analysis

is 1924, with 28808 observed price adjustments. Figure 14 in Appendix C.2 shows the

distribution of price adjustments in the sample.

I compute asymmetry for each item i as the ratio between average sizes of positive

and negative adjustments. Drift µi is recovered as the average price growth rate over

the entire period. Baley and Blanco (2020) show that it can also be computed as the

ratio between average adjustment and average time between adjustments, so I use their

approach as a robustness check. The two approaches converge as the sample size increases,

but can produce different estimates in finite samples. The baseline regression has the

18Alvarez et al. (2019) work with Argentinian micro-level price data and study the effect of inflation
on price behavior. The main distinction of my work is that I focus on the cross-sectional variation in
item-level trend inflation, whereas they use time variation in aggregate levels of inflation. Alvarez et al.
(2019) find that asymmetry in adjustments is insensitive to inflation at low inflation rates, but is positively
related at high levels of inflation. I work with U.S. data and find evidence for the positive relationship
even at low levels of trend inflation. A potential reason for the differences in our findings is that I consider
trend inflation, i.e., the long-term growth rate of the price level, whereas Alvarez et al. (2019) focus on
period-specific actual inflation, i.e., log-difference in price levels between two consecutive periods.
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following form:

log
∆+pi
∆−pi

= αc + βµi + γ′xi + εi

where ∆+pi is the average positive price adjustment of item i, ∆−pi – average negative

price adjustment, µi is the drift, xi – a vector of controls and αc is a category fixed effect.

Items in the data are grouped into narrowly-defined categories, corresponding to the URLs

where the items are found on the website. These categories are narrower than the COICOP

groups and there are seven items in each category on average.19 Including category fixed

effects controls for many unobservables such as category-specific demand, adjustment costs,

or other characteristics that may simultaneously affect both the drift and the asymmetry.

The set of controls includes the frequency and standard deviation of adjustments, as well

as the variance of idiosyncratic shocks σ2
i , computed following Baley and Blanco (2020).

All variables are normalized to monthly frequency, and summary statistics are provided in

Table 3 in Appendix C.2.

The first three columns of Table 1 show the results from an OLS regression with

standard errors clustered at the category level. Columns (1) and (2) employ the baseline

estimates of µi as an average price growth rate, and an alternative measure for µi (as in

Baley and Blanco (2020)) is used in column (3).

Table 1: Micro-level Asymmetry

Dependent variable:

Asymmetry
(

log ∆+pi
∆−pi

)
OLS IV

(1) (2) (3) (4) (5)

Drift µ 4.969∗∗∗ 4.966∗∗∗ 11.407∗∗

(1.830) (1.873) (5.448)
Drift µ (alt.) 4.552∗∗∗ 36.707

(1.745) (25.146)
σ2 −0.899 −0.890

(3.173) (3.175)
Frequency 0.114 0.113

(0.151) (0.151)
Std. Dev. 0.028 0.024

(0.730) (0.730)

Observations 1,924 1,924 1,924 1,376 1,376
R2 0.458 0.460 0.460 0.483 0.413

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. All specifications include category FE.
Standard errors are clustered at category level.

Table 1 suggests that higher trend inflation is positively related to asymmetry in

19I exclude categories with less than 3 items to allow for enough within-category variation.
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individual adjustments, independent of the way drift µ is computed. The inclusion of

controls does not alter this result. The coefficient in the first column is interpreted in the

following way: a one percentage point increase in monthly trend inflation is associated

with a 5% increase in the size of positive adjustments relative to the size of negative

adjustments. Note that a 1 p.p. increase in trend inflation is not a very large change at the

item level: standard deviation of the drift µi is 0.8 p.p. in the cross-sectional distribution,

so that the drift effect is sizable.

As noted previously, the positive relationship between the average growth rate and

the asymmetry in adjustments may not be too surprising, but it is not immediate either. A

higher trend may be purely driven by more frequent positive adjustments and less frequent

negative adjustments, however, this option is not supported by the data.

One potential drawback of the baseline OLS specification is the fact that drifts and

asymmetries are computed using the same item-level time series. This may lead to spurious

results in a short sample because a large positive adjustment simultaneously increases the

estimates of drift and asymmetry. To resolve this issue, I split the sample into two equal

parts for each item. I use the drift in the first subsample as an instrument for the drift in

the second subsample. I then compute asymmetry in the second subsample and regress it

onto the instrumented drift. Thus, the drifts and asymmetries are effectively estimated

on different samples, which helps addressing this issue. The results are presented in

columns (4) and (5) of Table 1. The coefficient in front of the drift increases, and so do the

standard errors.20 The baseline estimate of the drift remains significant and the alternative

specification becomes marginally insignificant with p-value = 0.14. Overall, I conclude

that the results are robust and provide supporting evidence for the model predictions

regarding the link between trend inflation and asymmetry at the level of individual price

adjustment.

4 Monetary Policy in General Equilibrium

The analytic results of this paper provide new insights into the efficacy of monetary policy

and its dependence on trend inflation. However, these results are obtained in a rather

restrictive environment. Firstly, I assume that firms follow the steady state optimal policy

along the transition path. Secondly, I use a second-order approximation of the profit

function, which ensures symmetry and substantially contributes to analytic tractability.

Finally, I consider monetary interventions in isolation, whereas this policy instrument

is often used as a counteractive measure to mitigate the effects of other disturbances.

Therefore, monetary policy is often implemented outside of an economy’s steady state, in

contrast to the assumption imposed in the analytic framework.

20The standard errors increase due to the instrumenting procedure and a smaller sample as I additionally
restrict attention to items with at least 5 adjustments in the second subsample.
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I now address all these issues and embed the analytic framework into a standard

general equilibrium model, calibrated to the U.S. data. I consider a transitory adverse

markup shock, which leads to an increase in prices and a drop in consumption. Firms

now correctly anticipate the economy dynamics and follow the appropriate optimal policy.

I then compare the ability of a monetary authority to stabilize the economy under the

baseline 2% inflation target and a counterfactual 4% inflation target. A markup shock is

well-suited for this exercise, as it only increases a wedge in the economy stemming from

price dispersion, without affecting the efficient allocation. This provides a rationale for

the imposed stabilization objective of the monetary authority. Because the markup shock

depresses consumption and increases prices, it introduces a trade-off for the monetary

authority, as it can not stabilize consumption and prices simultaneously.

I find that increasing the inflation target imposes two negative effects on the ability of

a policymaker to stabilize the economy after such a shock. Firstly, higher trend inflation

amplifies the initial effect of the markup shock, leading to larger price and consumption

deviations. Secondly, it worsens the trade-off between price and consumption stabilization.

Both effects are sizable and arise due to the impact of trend inflation on the asymmetry of

price and output responses. The results relate to the ongoing discussion on increasing the

inflation target, highlighting adverse implications for stabilization policy away from the

zero lower bound, in particular for the type of shocks that exhibit the ‘cost-push’ property

of moving prices and output in opposite directions.

4.1 General Equilibrium Setup

4.1.1 Households

I embed the analytic model from Section 1 into a general equilibrium setting, similar to

those in Nakamura and Steinsson (2010) and Karadi and Reiff (2019). Representative

households maximize the present discounted value of their utility, given by∫ ∞
0

e−ρt (logCt − αLt) dt

where Ct denotes consumption of a composite good, Lt is the household’s labor supply, ρ

is the discount rate, and α is the disutility of labor. The household’s budget constraint is

as follows:

PtCt + Ḃt = RtBt +WtLt + Πt

where Pt is the aggregate price level, Bt are the holdings of a bond with nominal gross

return Rt, Wt is the wage and Πt are the firms’ profits. Consumption Ct is composed of a
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continuum of differentiated goods and is given by

Ct =

[∫ (
At(i)Ct(i)

) θ−1
θ di

] θ
θ−1

where Ct(i) is consumption of a good produced by firm i, At(i) is its quality, and θ is the

elasticity of substitution. The aggregate price level is Pt =
[∫ (

Pt(i)/At(i)
)1−θ

di
] 1

1−θ
and

cost minimization yields the following demand for good i:

Ct(i) = At(i)
θ−1

[
Pt(i)

Pt

]−θ
Ct

First-order conditions imply that wage Wt is proportional to nominal aggregate con-

sumption PtCt, and nominal interest rate is determined by the growth rate of nominal

consumption:

Wt = αPtCt

Rt = ρ+
˙(PtCt)

PtCt

4.1.2 Firms

There is a continuum of firms producing differentiated goods, indexed by i ∈ [0, 1]. Firms

demand labor Lt(i) and set prices Pt(i). Production technology is given by Yt(i) =

Lt(i)/At(i), so that higher quality goods are more costly to produce. Firms’ profits are

given by Πt(i) = Pt(i)Yt(i) −WtLt(i). To adjust its price at time t, a firm must hire

additional labor and the total cost of adjustment is given by κPt(i)Yt(i). In addition, firms

receive an opportunity to adjust for free at rate λ. Such a setup is typically referred to in

the literature as a ‘CalvoPlus’ model because it nests both the standard menu cost model

and the Calvo (1983) setting. Each firm maximizes the expected discounted stream of

profits:

E

[∫ ∞
0

QtΠt(i)dt− κ
∞∑
i=1

QτiPτi(i)Yτi(i)

]

where Qt = αe−ρt

Wt
is the discount factor implied by the household’s problem and τi

are the adjustment times when a firm pays adjustment costs. The goods quality At(i)

evolves as a geometric Brownian motion with no drift: d logAt(i) = σdWt(i). Using the

household’s first-order conditions and the fact that firms face consumers’ demand function
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(Yt(i) = Ct(i)), one can rewrite the firm’s profit and cost functions as:

Πt(i) = α−θWt

(
θCt
θ − 1

)1−θ

π(zt(i))︷ ︸︸ ︷
e−θzt(i)

(
ezt(i) − θ − 1

θ

)
κPt(i)Yt(i) = κα−θWt

(
θCt
θ − 1

)1−θ

e(1−θ)zt(i)︸ ︷︷ ︸
c(zt(i))

where zt(i) is the price gap, given by zt(i) = logPt(i) − logP ∗t (i), and P ∗t (i) is the

frictionless optimal price, given by P ∗t (i) = θ
θ−1

WtAt(i). Note that Wt cancels out in the

firm’s objective function, so that in a stationary equilibrium the firm’s problem does not

depend on any aggregate state, as constant aggregate consumption may be taken out of

the problem.

4.1.3 Monetary Authority and Stationary Equilibrium

Following Nakamura and Steinsson (2010) and Midrigan (2011), I assume that the monetary

authority is in full control of the nominal output Mt = PtCt, which in the steady state

grows at a constant rate µ: d logMt = µdt. This assumption is common in the literature

and can be rationalized by a binding cash-in-advance constraint. Given that µ is set

exogenously in this model, I will refer to it both as ‘trend inflation’ and ‘inflation target’.

Household’s first-order conditions imply that the equilibrium nominal interest rate

is constant and equal to R̄ = ρ+ µ, and the wage follows the law of motion of nominal

output: d logWt = µdt. This creates a drift in the firm’s optimal price P ∗t (i), and thus in

the price gaps zt(i). In the absence of action, price gaps evolve as dzt(i) = −µdt+σdWt(i).

The firm’s problem becomes almost identical to the one considered in the analytic section,

with a few exceptions: (1) the profit function is no longer symmetric, (2) adjustment

costs depend on the price gap at the time of adjustment, and (3) firms receive costless

adjustment opportunities at rate λ. The solution to the firm’s problem is characterized by

a triplet {z, ẑ, z} where z and z are the lower and upper boundaries of inaction region, and

ẑ is the return point. The value function satisfies the following Hamilton–Jacobi–Bellman

equation in the inaction region:

(ρ+ λ)v(z) = π(z) + λv(ẑ)− µv′(z) +
1

2
σ2v′′(z)

where π(z) = e−θz
(
ez − θ−1

θ

)
and ẑ is the optimal return point. The boundary conditions

are v(z) = v(ẑ)−c(z) and v(z) = v(ẑ)−c(z), where c(z) = e(1−θ)z. Optimality and smooth

pasting require v′(ẑ) = 0, v′(z) = (θ − 1)c(z) and v′(z) = (θ − 1)c(z). The density of the
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stationary price gap distribution f(z) is determined by a Kolmogorov forward equation:

λf(z) = µf ′(z) +
1

2
σ2f ′′(z)

Aggregate consumption, price level and employment can be computed using the stationary

price gap distribution as follows:

Ct = C̄ =
θ − 1

αθ

[∫ z

z

e(1−θ)zf(z)dz

] 1
θ−1

Pt =
αθ

θ − 1
Mt

[∫ z

z

e(1−θ)zf(z)dz

] 1
1−θ

Lt = L̄ = C̄1−θ
(

αθ

θ − 1

)−θ ∫ z

z

e−θzf(z)dz + Γ

Γ = κα−θ
(

θC̄

θ − 1

)1−θ [
γ+e(1−θ)z + γ−e(1−θ)z]

where Γ is the total labor hired for price adjustment per unit of time and γ+ and γ− are

the masses of firms adjusting at a cost upward or downward, respectively, per unit of time.

Finally, bond holdings Bt are in zero net supply, so that in equilibrium Bt = 0.

4.2 Calibration

I set the discount rate ρ to 0.04 in annual terms and trend inflation µ to 0.02, roughly

matching the average annual inflation in the U.S. over the last two decades.21 The elasticity

of substitution θ is set to 5, which is an intermediate value among those considered in the

literature.22 The remaining parameters, namely the disutility of labor α, the variance of

idiosyncratic shocks σ2, the adjustment cost κ, and the rate at which firms receive free

adjustment opportunities λ, are calibrated internally. I target equilibrium employment

of 1/3 and three moments of the distribution of price adjustments: frequency, average

size, and kurtosis. All three moments are informative of aggregate responses to shocks

and are a typical choice for calibration targets. Alvarez, Le Bihan, and Lippi (2016) show

analytically that in a wide class of menu cost models the ratio of kurtosis to frequency is

a sufficient statistic for the cumulative effect of a marginal monetary shock on output. In

the first section of this paper I show that the effect of trend inflation on aggregate price

and output responses depends on the average size of adjustment.

I target values of frequency, average size and kurtosis, reported in the literature. I set

21When calibrating a continuous time model, the period length is innocuous, as it only scales certain
parameters up or down.

22Midrigan (2011) sets θ to 3, Nakamura and Steinsson (2010): θ = 4, Karadi and Reiff (2019): θ = 5,
Golosov and Lucas (2007) use θ = 7.
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the frequency of price changes to 10% per month, the average size of adjustment to 10%,

and the kurtosis of the distribution of price adjustments to 4. The first two values are

standard, as many studies report very similar estimates using different data sets.23 The

estimates of kurtosis are much more dispersed: Alvarez, Lippi, and Oskolkov (2020) report

values close to 2, Midrigan (2011): 3.15, Alvarez, Le Bihan, and Lippi (2016): 4, Vavra

(2014): 6.4. I use an intermediate value of 4, obtained by Alvarez, Le Bihan, and Lippi

(2016) from the weekly scanner data of the Dominick’s dataset, accounting for heterogeneity

and measurement error. The model matches the targeted statistics exactly, and Table 2

summarizes model parameters and their values in annual terms. In Appendix D.3 I use an

alternative calibration, targeting the kurtosis of the price adjustment distribution of 3.

This affects the overall non-neutrality of monetary policy, but the main findings remain

qualitatively unchanged.

Table 2: Calibrated Model Parameters

Parameter Value

Discount rate ρ 0.04
Trend inflation µ 0.02
Elasticity of substitution θ 5
Disutility of labor α 2.2
Variance of idiosyn. shocks σ 0.148
Adjustment cost κ 0.11
Rate of free adjustmens λ 1.126

Values are denominated in annual terms.

4.3 Markup Shock

I now consider an unexpected shock that increases steady state optimal markup
(

θ
θ−1

)
by

3% and then gradually reverts to zero in AR(1) fashion. Formally, the dynamics of the

shock εt are governed by an Ornstein-Uhlenbeck process, so that εt = 0.03 · e−ηt, where η

determines the speed of convergence and is set to generate a half-life of two months. The

shock sets the economy on a deterministic transition path, increasing the aggregate price

and depressing consumption. I defer the description of the non-stationary equilibrium

conditions to Appendix D.1 and plot the dynamics of consumption and prices on Figure 8.

The price level response is plotted in terms of percent deviations from the trend,

whereas consumption and markup responses are in terms of percent deviations from

the steady state. The markup shock raises the firms’ optimal prices, leading to an

23Frequency: Nakamura and Steinsson (2008): 10.8%, Nakamura and Steinsson (2010): 8.7%, Vavra
(2014): 10.9%. Average size of adjustment: Nakamura and Steinsson (2008): 8.5%, Kehoe and Midrigan
(2015): 11%, Vavra (2014): 7.7%. For the average size of adjustment, the mean and median estimates
are usually similar, whereas the mean frequency is typically higher than the median. I use the median
frequency estimates, as this is the preferred choice for single-sector models (see Nakamura and Steinsson
(2010)).
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increase in the actual price level. Because the nominal output stays constant and prices

increase, consumption falls. Integrating the area under the lines, one obtains cumulative

impulse responses, which are given by
∫∞

0
(pt − p̄t)dt = 0.44% for the price level and∫∞

0
(ct − c̄)dt = −0.44% for consumption, where p̄t is the trend of the aggregate log-price

and c̄ is the steady state log-consumption.24

Figure 8: Markup Shock
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Model-generated impulse responses of consumption, price level and markup to a 3% markup shock.
Consumption and markup responses are in terms of percent deviations from the steady state, whereas
price level responses are in terms of percent deviations from the trend.

The shock is purely inefficient in the sense that it increases the wedge between the

actual and efficient level of output, without affecting the efficient allocation.25 Thus, it

would be desirable to ‘undo’ its consequences by means of policy. To capture this in a

simple way, I assume that the policymaker dislikes negative deviations of consumption

from its efficient level and values price stability (dislikes any deviations from the trend).26

I also assume that monetary interventions follow the same dynamics as the markup shock,

and the only choice of the policymaker is the level of monetary intervention. Formally,

monetary intervention δt is proportional to the markup shock: δt = δεt, where δ ∈ R
and is chosen by the monetary authority. A stimulus (δ > 0) mitigates the negative

response of consumption, but raises prices even further (see Figure 27 in Appendix D.2).

A contraction (δ < 0) creates an opposite effect, stabilizing prices and amplifying the drop

in consumption. The policymaker thus faces a trade-off, as it is impossible to stabilize

consumption and prices simultaneously.

24A 1% negative cumulative response of consumption is equivalent to a scenario when consumption is
held at 1% below its steady state for one year.

25Efficient output is achieved under zero price dispersion and is given by C∗
t = Lt. Due to price

dispersion, Ct =
[∫

(Pt(i)/(At(i)Pt))
−θ
di
]−1

C∗
t (see Yun (1996)). An increase in optimal markup lowers

θ and increases the inefficiency stemming from price dispersion.
26Such an objective is different from an optimal policy that considers welfare, which depends on the

level of consumption, the degree of price dispersion and the volume of adjustment costs paid by the firms.
A meaningful study of optimal policy with respect to trend inflation would require additional model
components, e.g. heterogeneity in individual price trends as in Adam and Weber (2020).
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I do not assign any weights to these objectives, but rather consider the whole possibility

frontier of the policymaker, given the initial markup shock and the restrictions on policy

outlined above. By varying the sign and size of the monetary intervention δ, the policymaker

achieves different combinations of cumulative consumption and price responses. The

resulting frontier depends, among other parameters, on trend inflation µ. I now compare

these frontiers for the baseline level of trend inflation of 2% per year and a counterfactual

value of 4%. Figure 9 shows the results.

Figure 9: Frontiers, Small Shock
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Feasible combinations of cumulative responses of consumption (x-axis) and price level (y-axis) after a 3%
markup shock. The solid blue line corresponds to the baseline economy with a 2% trend inflation, and the
dashed red line represents a counterfactual economy with a 4% trend inflation. Consumption responses are
in terms of percent deviations from the steady state, whereas price level responses are in terms of percent
deviations from the trend. Black dots show the outcomes if the monetary authority does not intervene.

On the x-axis I plot cumulative consumption responses, on the y-axis – cumulative

responses of the price level.27 The curves show feasible outcomes for the baseline economy

with trend inflation of 2% (solid blue line) and a counterfactual economy with a 4% trend

inflation (dashed red line), given the initial 3% markup shock. The red asterisk corresponds

to a (0, 0) scenario, where the effect of the markup shock is completely neutralized. Black

dots on the curves correspond to scenarios when the monetary authority does not intervene

(δ = 0). Stimulative policy (δ > 0) moves an economy along its frontier to the right,

contractionary measures (δ < 0) move it to the left.

Firstly, note that in the economy with a 4% trend inflation the black dot is further

away from the (0, 0) point, which means that the negative effects of the markup shock are

on their own stronger if trend inflation is higher. Under a 4% inflation target, the markup

shock leads to a 3.4% stronger increase in prices and a 3.4% stronger drop in consumption,

27I consider cumulative deviations of the price level rather than inflation, as in this case it is impossible
to completely neutralize the effect of the shock on inflation due to the imposed restriction on monetary
policy. However, the findings of the paper remain unchanged if I substitute the price level CIR with the
CIR of inflation, as shown in Appendix D.4.
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compared to the baseline economy with an inflation target of 2%. When trend inflation is

higher, prices exhibit less upward rigidity and have a stronger response to the markup

shock, which also results in a larger consumption drop if the monetary authority keeps the

nominal output constant. Importantly, this result is not driven by changes in the overall

frequency of price adjustments because it remains virtually constant as I vary the level of

trend inflation. Instead, the result is due to changes in the relative frequencies and sizes

of positive and negative price adjustments.

Secondly, higher trend inflation worsens the trade-off between consumption and price

stabilization. This latter effect is less apparent on the graph, but can be seen when

calculating the curvature of the frontiers. I measure the curvature as a ratio between the

slopes of stimulative and contractionary interventions. The slope of stimulative policy

αS reflects the rate at which the policymaker gains consumption and loses price stability,

when conducting stimulative policy (δ > 0). Graphically, it is the slope of a straight line,

passing through an economy’s initial point (black dot) and the intersection of the frontier

with the y-axis. The slope of contractionary policy αC reflects the rate at which the

policymaker gains price stability and loses consumption, when conducting contractionary

policy (δ < 0). Graphically, it is the slope of a straight line, passing through an economy’s

initial point (black dot) and the intersection of the frontier with the x-axis. The curvature

is then measured as a ratio between the slopes: αS/αC .28 A higher curvature indicates

that the stimulative slope becomes steeper, whereas the contractionary slope flattens out.

Therefore, the monetary authority must sacrifice more consumption when stabilizing prices

and tolerate larger price deviations when restoring consumption. Thus, the higher the

curvature, the worse the stabilization trade-off is.

For the baseline economy with a 2% inflation target the curvature is equal to 0.93,

whereas under a 4% inflation target it increases by by 7.5% to 1.0. Under higher trend

inflation, the policymaker must sacrifice more consumption when stabilizing prices, and

must tolerate larger price responses when stimulating consumption. This is again caused

by the effect of trend inflation on the asymmetry of price and consumption responses. As

the inflation target rises, prices become more sensitive to stimulative shocks and it becomes

harder for the monetary authority to stimulate consumption. Simultaneously, prices

become less sensitive to contractionary shocks, which impedes the ability of policymakers

to stabilize prices. Higher trend inflation increases price flexibility exactly when it is

desirable to have rigid prices, and makes them stickier exactly when flexibility is needed.

Both of the effects of a higher inflation target are amplified if the initial markup shock

is larger. Figure 10 plots the same frontiers for a 10% markup shock. The economy with a

4% trend inflation now has a 6.1% stronger response to the initial markup shock and an

28This measure is not ideal, as it assigns a unique value to the entire frontier, whereas the degree of
curvature may vary along the frontier. However, it summarizes the overall trade-off, considering two
extreme points of achieving zero consumption or zero price CIRs.

42



11% higher curvature, compared to the economy with a 2% trend inflation.

Figure 10: Frontiers, Large Shock
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Feasible combinations of cumulative responses of consumption (x-axis) and price level (y-axis) after a 10%
markup shock. The solid blue line corresponds to the baseline economy with a 2% trend inflation, and the
dashed red line represents a counterfactual economy with a 4% trend inflation. Consumption responses are
in terms of percent deviations from the steady state, whereas price level responses are in terms of percent
deviations from the trend. Black dots show the outcomes if the monetary authority does not intervene.

Overall, the results show that trend inflation affects the ability of a policymaker to

stabilize the economy after an adverse markup shock. Higher trend inflation decreases

upward price stickiness and leads to stronger price and consumption responses to the

initial markup shock. In addition, higher trend inflation amplifies the asymmetry of price

and consumption responses to positive and negative monetary shocks, which worsens the

policymaker’s trade-off when stabilizing the economy. I finally note that these results

are of greater importance for large shocks, as the effects of trend inflation become more

pronounced.

In both scenarios I considered a shock that temporarily increases monopolistic power

of firms. A shock that decreases firms’ monopolistic power and drives optimal markups

down would have two distinct effects. Firstly, because the steady state markup is positive

and price dispersion is non-zero, a fall in markups would decrease the inefficiency in the

economy and bring consumption closer to its efficient level. Such a shock would increase

consumption and decrease prices, so that any subsequent expansionary monetary policy

would lead to price stabilization and further consumption growth, thus inducing no trade-

off. Secondly, because higher trend inflation increases downward price rigidity, the initial

response to the shock would be larger in the baseline economy with a 2% inflation target

than in the counterfactual with a 4% inflation target. In addition, it will be easier for the

monetary authority to stabilize prices and consumption under higher trend inflation, again

due to lower upward price rigidity and higher downward rigidity. Therefore, all results are

‘mirrored’ if the markup shock is of the opposite sign, and higher trend inflation would
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be beneficial from a pure stabilization perspective.29 It follows that the overall potency

of monetary stabilization policy would depend on which types of shocks prevail in the

economy.

5 Summary

In this paper I show that trend inflation matters for economy’s responses to aggregate

shocks and monetary policy interventions. I derive a set of new analytic results for the

effect of trend inflation on aggregate dynamics in a standard menu cost model. The main

contribution is that I consider monetary shocks of any size in an environment with non-zero

drift. This approach reveals several new properties of aggregate dynamics, especially for

large shocks.

The key characteristic of trend inflation is that it affects aggregate responses to

positive and negative shocks asymmetrically. In the presence of adjustment costs, prices

are more sensitive to shocks that push them in the same direction as the trend, and are

less sensitive to shocks the push them in the opposite direction. Under positive trend

inflation, larger price flexibility in responses to positive monetary shocks leads to weaker

output increases, whereas smaller price flexibility in responses to negative shocks leads to

stronger output declines. These effects are especially pronounced for large shocks that

force all firms to update prices. While positive large shocks are neutral in the driftless

case, they cause output contractions in economies with positive trend inflation.

The empirical analysis shows that the new analytic predictions of the model are in

line with the data. I find that sectors with a higher PPI growth rate exhibit stronger price

responses to positive monetary shocks and weaker responses to negative shocks, compared

to sectors with a lower growth rate of PPI. I also find that aggregate output expansions

after positive monetary shocks are almost entirely driven by sectors with a low PPI growth

rate, whereas output contractions are distributed more equally. In addition, production

responses are generally non-linear and large positive shocks may lead to a decline in output.

This holds for sectors with both low and high levels of trend inflation, however the size of

a positive shock that causes an output contraction is smaller for sectors with a larger level

of trend inflation.

My results have important implications for monetary stabilization policy and con-

tribute to the ongoing discussion on the necessity to raise the inflation target. Using a

general equilibrium model calibrated to the U.S. data, I find that higher trend inflation has

a sizable effect on the ability of a policymaker to stabilize the economy after an adverse

markup shock. Raising the inflation target from 2% to 4% amplifies the initial response to

the markup shock and worsens the stabilization trade off. A policymaker has to sacrifice

29See also the discussion in Blanco (2020) on the effects of higher trend inflation on the likelihood of
hitting the zero lower bound.
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more consumption when stabilizing prices and has to tolerate larger price deviations when

stimulating consumption. Thus, a higher inflation target impedes the ability of a monetary

authority to counteract adverse shocks that move output and prices in opposite directions.
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A Miscellaneous results

A.1 Expressing M(δ, µ) in terms of price gaps

Alvarez and Lippi (2014) show that impulse response of aggregate price level can be

approximated as:

P (t)− P̄ (t) ≈ δ +

∫ z(µ)

z(µ)

zdFt(z, µ)− x̄(µ) with x̄(µ) =

∫ z(µ)

z(µ)

zdF (z, µ)

where P (t) is the aggregate log-price t periods after shock δ, P̄ (t) is the hypothetical

price in absence of shock, Ft(z, µ) is the period t distribution of price gaps, F (z, µ) is the

stationary distribution of price gaps and x̄(µ) is the average price gap in steady state.

Note that instead of evolution of gap distribution (Ft(z, µ)), one can consider conditional

evolution of gaps given initial after-shock distribution Fδ(z, µ):

P (t)− P̄ (t) ≈ δ +

∫ z(µ)

z(µ)

E
(
z(t)− x̄(µ)

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

where x̄(µ) is taken inside integral and expectation. Finally, switching the order of

integration, one obtains:

M(δ, µ) =

∫ ∞
0

[
δ−
(
P (t)−P̄ (t)

)]
dt ≈ −

∫ z(µ)

z(µ)

E
(∫ ∞

0

(
z(t)− x̄(µ)

)
dt

∣∣∣∣ z(0) = z

)
dFδ(z, µ)

A.2 Driftless Benchmark

Suppose µ = 0. Firms’ value function satisfies the following HJB:

ρv(z) = −z2 +
σ2

2
v′′(z)

The general solution to which is:

v(z) = A(eαz + e−αz)− 1

ρ
z2 − σ2

ρ2

where α =
√

2ρ/σ2 and A is the unknown coefficient that depends on boundary conditions.

These are given by v(z(0)) = v(z(0)) = v(ẑ(0))− κ. Due to symmetry, z(0) = −z(0) and

ẑ(0) = 0. Denote z0 = z(0) to ease notation. Using the expression for v(z) and combining

one of the boundary conditions with smooth pasting condition v′(z0) = 0, one gets:

A =
2z0

αρ(eαz0 − e−αz0)

z2
0 = Aρ(eαz0 + e−αz0 − 2) + ρκ
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which implicitly defines solution triplet {−z0, 0, z0}.

Stationary density is defined by Kolmogorov forward equation (σ2/2)fzz(z, 0) = 0

with boundary conditions f(z0, 0) = f(−z0, 0) = 0, integration to one
∫ z0

−z0
f(z, 0)dz = 1

and continuity at z = 0. It is thus given by:

f(z, 0) =
z0 − |z|
z2

0

for all z ∈ [−z0, z0] and is zero otherwise. For completeness, cumulative distribution

function F (z, 0) is then given by:

F (z, 0) =


(z0+z)2

2z2
0
, for z < 0

1− (z0−z)2

2z2
0
, for z ≥ 0

Consider a positive shock δ > 0. Impact effect in driftless economy is:

Θ(δ, 0) = −
∫ −z0

−z0−δ
zf(z+δ, 0)dz

and due to a kink in f(z, 0) is computed separately for smaller (δ ≤ z0) and larger (δ ≥ z0)

shocks. A direct computation of the integral provides:

Θ(δ, 0) =


1

6z2
0
δ2(δ + 3z0), for δ < z0

1
6z2

0

[
δ(6z2

0 + 3δz0 − δ2)− 4z3
0

]
, for δ ∈ [z0, 2z0)

δ, for δ ≥ 2z0

The last line follows since for any δ ≥ 2z0:

Θ(δ, 0) = −
∫ −z0

−z0−δ
zf(z+δ, 0)dz = −

∫ −z0+δ

−z0

(z − δ)f(z, 0)dz

= −
∫ z0

−z0

(z − δ)f(z, 0)dz = δ − x̄(0) = δ

where x̄(0) =
∫ z0

−z0
zf(z, 0)dz is the average gap. First equality is due to variable substitu-

tion, second follows from the fact that f(z, 0) = 0 for z ≥ z0 and third one is immediate.

Finally, x̄(0) = 0 due to symmetry of f(z, 0).

Consider now cumulative impulse response (δ > 0):

M(δ, 0) = −
∫ z0

−z0

E
(∫ τ

0

z(t)dt | z(0) = z

)
dFδ(z, 0)
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Define m(z, 0) to be the expected cumulated price gap until first adjustment, so that

m(z, 0) = E
(∫ τ

0
z(t)dt | z(0) = z

)
. The second argument of the function highlights that

it is evaluated under µ = 0. This function is characterized by z + (σ2/2)mzz(z, 0) = 0

together with boundary conditions m(z0, 0) = m(−z0, 0) = 0, which implies that:

m(z, 0) =
z2

0z − z3

3σ2

Given that shock shifts the entire distribution in parallel and some firms adjust immediately,

distribution Fδ(z, 0) is the shifted stationary distribution, so that Fδ(z, 0) = F (z+δ, 0) for

all z ∈ [z, z−δ] and Fδ(z, 0) = 1 for all z ∈ (z−δ, z]. In addition, there is a mass point at

z = 0 due to firms that adjust immediately, equal to F (−z0+δ, 0). M(δ, 0) is then given

by:

M(δ, 0) = −
∫ z0−δ

−z0

m(z, 0)f(z+δ, 0)dz +m(0, 0)F (−z0+δ, 0)

where the second term can be ignored since m(0, 0) = 0. Again, due to a kink in f(z, 0),

the integral has to be considered separately for smaller (δ ≤ z0) and larger (δ ≥ z0) shocks.

A direct computation yields:

M(δ, 0) =


1

180σ2z2
0
[3δ5 + 15δ4z0 − 40δ3z2

0 + 30δz4
0], for δ < z0

1
180σ2z2

0
[−3δ5 + 15δ4z0 − 20δ3z2

0 + 16z5
0], for δ ∈ [z0, 2z0)

0, for δ ≥ 2z0

The last line is trivial since if δ ≥ 2z0, then the integral in M(δ, 0) is taken over the interval

[z0−δ,−z0], where Fδ(z, 0) has no mass.

A.3 Optimal policy under non-zero drift

Recall that firm’s value function solves the following HJB equation for any z ∈ [z(µ), z(µ)]:

ρv(z) = −z2 − µv′(z) +
σ2

2
v′′(z)

General solution to v(z) is thus given by:

v(z) = C1e
R1z + C2e

R2z − 1

ρ
z2 +

2µ

ρ2
z −

(
σ2

ρ2
+

2µ2

ρ3

)

where R1 =
µ−
√
µ2+2σ2ρ

σ2 , R2 =
µ+
√
µ2+2σ2ρ

σ2 . Coefficients C1 and C2 are unknown and

determined by boundary conditions v(z) = v(z) = v(ẑ)− κ, where I drop the argument

µ in policy variables in order to ease notation. In addition v(z) satisfies smooth pasting

conditions v′(z) = v′(z) = 0 and optimality condition v′(ẑ) = 0. Altogether this results in
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a system of equations:

C1R1e
R1z + C2R2e

R2z − 2

ρ
z +

2µ

ρ2
= 0 (h1)

C1R1e
R1ẑ + C2R2e

R2ẑ − 2

ρ
ẑ +

2µ

ρ2
= 0 (h2)

C1R1e
R1z + C2R2e

R2z − 2

ρ
z +

2µ

ρ2
= 0 (h3)

C1(eR1z − eR1ẑ) + C2(eR2z − eR2ẑ)− 1

ρ
(z2 − ẑ2) +

2µ

ρ2
(z − ẑ) + κ = 0 (h4)

C1(eR1z − eR1ẑ) + C2(eR2z − eR2ẑ)− 1

ρ
(z2 − ẑ2) +

2µ

ρ2
(z − ẑ) + κ = 0 (h5)

Let ψ denote the vector of unknowns: ψ = [z, ẑ, z, C1, C2]. Then the above system of

equations can be summarized as:

H(µ, ψ) = 0 (A.1)

where H : R×R5 → R5 and each row of H(µ, ψ) corresponds to one of the equations (h1)

– (h5). Given µ, equation (A.1) implicitly defines solution triplet {z, ẑ, z} and coefficients

C1 and C2. Applying Implicit Function Theorem yields:

∂ψ

∂µ

∣∣∣∣
µ=0

= −

[
∂H

∂ψ

∣∣∣∣
µ=0

]−1
∂H

∂µ

∣∣∣∣
µ=0

provided ∂H
∂ψ

∣∣
µ=0

has full rank. Recall from Appendix A.2 that under µ = 0 solution to

(A.1) is ψ0 = [−z0, 0, z0, A,A], where z0 and A satisfy:

A =
2z0

αρ(eαz0 − e−αz0)

z2
0 = Aρ(eαz0 + e−αz0 − 2) + ρκ

with α =
√

2ρ/σ2. Let w1 = (eαz0 − e−αz0), w2 = (eαz0 + e−αz0), γ = 2αz0w2−2w1

ρw1
and

β = 4αz0−2w1

ρw1
. Then a direct computation provides:

∂H

∂ψ

∣∣∣∣
µ=0

=


γ 0 0 −αeαz0 αe−αz0

0 β 0 −α α

0 0 γ −αe−αz0 αeαz0

0 0 0 eαz0 − 1 e−αz0 − 1

0 0 0 e−αz0 − 1 eαz0 − 1


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This matrix can be inverted as:

[
∂H

∂ψ

∣∣∣∣
µ=0

]−1

=



γ−1 0 0 α(w2+1)
γw1

α
γw1

0 β−1 0 α
βw1

− α
βw1

0 0 γ−1 − α
γw1

−α(w2+1)
γw1

0 0 0 w1+w2−2
2w1(w2−2)

w1−w2+2
2w1(w2−2)

0 0 0 w1−w2+2
2w1(w2−2)

w1+w2−2
2w1(w2−2)


The derivative of H(µ, ψ) with respect to µ evaluated at µ = 0 is:

∂H

∂µ

∣∣∣∣
µ=0

=



αz0w2+α2z2
0w1+2w1

ρ2w1

2αz0+w1

ρ2w1
αz0w2+α2z2

0w1+2w1

ρ2w1

−α2z2
0w2+2αz0w1

αρ2w1
α2z2

0w2+2αz0w1

αρ2w1


Multiplying and collecting terms yields:

∂z

∂µ

∣∣∣∣
µ=0

=
∂z

∂µ

∣∣∣∣
µ=0

=
4α2z2

0 + αz0w1w2 − 2w2
1

2ρ(αz0w1w2 − w2
1)

∂ẑ

∂µ

∣∣∣∣
µ=0

=
α2z2

0w2 + αz0w1 − w2
1

ρ(2αz0w1 − w2
1)

In order to recover the no-discounting case of Alvarez et al. (2019), use expressions

from Appendix B.1 and expand numerators up to 6th degree and denominators up to 4th

degree.

A.4 Stationary density under non-zero drift

Both the impact and cumulative impulse responses depend on stationary density. In this

section I provide derivatives of the stationary density function f(z, µ) with respect to drift

µ, evaluated at µ = 0.

Recall that stationary density satisfies the following Kolmogorov forward equation:

0 = µfz(z, µ) +
σ2

2
fzz(z, µ)

together with boundary conditions f(z(µ), µ) = f(z(µ), µ) = 0, unit mass condition∫ z(µ)

z(µ)
f(z, µ)dz = 1 and continuity at z = ẑ(µ). Note that density depends on drift µ both

directly as it appears in KFE, and indirectly as it also appears in boundary conditions

via policy variables. For the purpose of derivation, it is thus convenient to include policy
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variables explicitly as arguments with some abuse of notation: f(z;µ, z, ẑ, z), so that

f(z, µ) = f(z;µ, z(µ), ẑ(µ), z(µ)). Stokey (2009) shows that stationary density is given

by30:

f(z;µ, z, ẑ, z) =


eη(µ)ẑ−eη(µ)z+eη(µ)(z+z−z)−eη(µ)(ẑ+z−z)

(z−z)eη(µ)ẑ−(z−ẑ)eη(µ)z−(ẑ−z)eη(µ)z for z < ẑ

eη(µ)ẑ−eη(µ)z+eη(µ)(z+z−z)−eη(µ)(ẑ+z−z)

(z−z)eη(µ)ẑ−(z−ẑ)eη(µ)z−(ẑ−z)eη(µ)z for z ≥ ẑ

where η(µ) = 2µ/σ2. To ease notation and simplify later derivations, define v(z, µ) = eη(µ)z,

so that:

f(z;µ, z, ẑ, z) =


v(ẑ,µ)−v(z,µ)+v(z+z−z,µ)−v(ẑ+z−z,µ)
(z−z)v(ẑ,µ)−(z−ẑ)v(z,µ)−(ẑ−z)v(z,µ)

for z < ẑ

v(ẑ,µ)−v(z,µ)+v(z+z−z,µ)−v(ẑ+z−z,µ)
(z−z)v(ẑ,µ)−(z−ẑ)v(z,µ)−(ẑ−z)v(z,µ)

for z ≥ ẑ

Partial derivative of f(z, µ) with respect to drift is the total derivative of f(z, µ, z, ẑ, z):

∂f(z, µ)

∂µ

∣∣∣∣
µ=0

=
df(z;µ, z(µ), ẑ(µ), z(µ)

dµ

∣∣∣∣
µ=0,z=z(0),ẑ=ẑ(0),z=z(0)

=

(
∂f(z; ·)
∂µ

+
∂f(z; ·)
∂z

∂z

∂µ
+
∂f(z; ·)
∂ẑ

∂ẑ

∂µ
+
∂f(z; ·)
∂z

∂z

∂µ

)∣∣∣∣
µ=0,z=z(0),ẑ=ẑ(0),z=z(0)

the first component is the direct effect of µ on the shape of stationary density, whereas the

latter three are indirect effects through optimal policy. Recall that ẑ(0) = 0 and note that

due to symmetry of density around µ = 0, f(−z, µ) = f(z,−µ) and thus df(−z,0)
dµ

= −df(z,0)
dµ

,

so it suffices to calculate the derivative for z < 0 only.

The three derivatives
{
∂f(z;·)
∂z

, ∂f(z;·)
∂ẑ

, ∂f(z;·)
∂z

}
are straightforward to obtain given the

formula for f(z; 0, z, ẑ, z):

f(z; 0, z, ẑ, z) =


2 z−z

(ẑ−z)(z−z) for z < ẑ

2 z−z
(z−ẑ)(z−z) for z ≥ ẑ

Differentiating f(z; 0, z, ẑ, z) with respect to z, ẑ and z, and evaluating at the optimal

policy {z, ẑ, z} = {−z0, 0, z0} yields:{
∂f(z; ·)
∂z

,
∂f(z; ·)
∂ẑ

,
∂f(z; ·)
∂z

} ∣∣∣∣
µ=0,z=−z0,ẑ=0,z=z0

=

{
3z + z0

2z3
0

,−z + z

z3
0

,−z + z

2z3
0

}
for z < 0

The derivative with respect to µ is somewhat more complicated. First, set policy variables

30See Chapter 5. The formula is obtained as f(z) = L(z)/τ , where L(z) is the expected local time at z
and τ is the average length between adjustments.
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to their optimal values under µ = 0:

f(z;µ,−z0, 0, z0) =
1− v(z0, µ) + v(−z, µ)− v(−z0 − z, µ)

2z0 − z0v(−z0, µ)− z0v(z0, µ)
for z < 0

Second, denote the numerator by N(µ) and denominator by D(µ), so that:

∂f(z;µ,−z0, 0, z0)

∂µ
=
N ′(µ)D(µ)−D′(µ)N(µ)

D(µ)2
for z < 0 (A.2)

Third, note that vµ(z, µ) = 2
σ2 zv(z, µ) and thus derivatives of numerator and denominator

are given by:

Nk(µ) =
2k

σ2k

(
− zk0v(z0, µ) + (−z)kv(−z, µ)− (−z0 − z)kv(−z0 − z, µ)

)
Dk(µ) =

2k

σ2k

(
(−z0)k+1v(−z0, µ)− zk+1

0 v(z0, µ)

)
Since v(z, 0) = 1, evaluating at µ = 0 yields:

Nk(0) =


2k

σ2k

(
− zk0 − zk + (z + z0)k

)
for k odd

2k

σ2k

(
− zk0 + zk − (z + z0)k

)
for k even

Dk(0) =


0 for k odd

2k

σ2k

(
− 2zk+1

0

)
for k even

Note that N(0) = D(0) = 0 and it follows that evaluating (A.2) at µ = 0 directly is

not possible since both the numerator and the denominator converge to zero as µ → 0.

Applying L’Hospital’s rule four times yields:

∂f(z;µ, z0, 0, z0)

∂µ

∣∣∣∣
µ=0

= −z
2 + z0z

σ2z2
0

for z < 0

Finally, collecting all the terms:

∂f(z, µ)

∂µ

∣∣∣∣
µ=0

= −z
2 + z0z

σ2z2
0

+
z

z3
0

∂z(0)

∂µ
− z + z0

z3
0

∂ẑ(0)

∂µ
for z < 0

which provides derivative of density with respect to drift µ at any point z ∈ [−z0, 0).

Density is non-differentiable at z = 0 and for positive values z ∈ (0, z0] derivative of

density is given by ∂f(z,0)
∂µ

= −∂f(−z,µ)
∂µ

.
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A.5 Impact effect under non-zero drift

Recall that for a positive shock δ > 0, impact effect is given by:

Θ(δ, µ) =

∫ z(µ)

z(µ)−δ
(ẑ(µ)− z)f(z + δ, µ)dz

and its derivative with respect to µ is:

∂Θ(δ, µ)

∂µ
=
∂z(µ)

∂µ
∆+(µ)f(z(µ)+δ, µ)+

∫ z(µ)

z(µ)−δ

(
∂ẑ(µ)

∂µ
f(z+δ, µ) + (ẑ(µ)− z)

∂f(z+δ, µ)

∂µ

)
dz

where ∆+(µ) = ẑ(µ)− z(µ) and I have used the fact that f(z(µ), µ) = 0. Evaluating at

µ = 0 yields:

∂Θ(δ, 0)

∂µ
= z0

∂z(0)

∂µ
f(−z0+δ, 0) +

∫ −z0

−z0−δ

(
∂ẑ(µ)

∂µ
f(z+δ, 0)− z∂f(z+δ, 0)

∂µ

)
dz

= z0
∂z(0)

∂µ
f(−z0+δ, 0) +

∂ẑ(µ)

∂µ
F (−z0+δ)−

∫ −z0

−z0−δ
z
∂f(z+δ, 0)

∂µ
dz

Previous sections of Appendix provide expressions for all terms in the above equation.

Note that as long as δ < z0, the integral in the last term is well defined, however if δ ≥ z0,

then it has to be split into two integrals since f(z, 0) is not differentiable at z = 0:∫ −z0

−z0−δ
z
∂f(z+δ, 0)

∂µ
dz =

∫ −δ
−z0−δ

z
∂f(z+δ, 0)

∂µ
dz +

∫ −z0

−δ
z
∂f(z+δ, 0)

∂µ
dz

A direct computation provides the following result:

∂Θ(δ, µ)

∂µ

∣∣∣∣
µ=0

=



δ2(6z2
0−δ2−2δz0)

12σ2z2
0

− δ3

6z3
0

∂∆+(0)
∂µ

, for δ < z0

δ2(δ2−2δz0−6z2
0)+z3

0(16δ−6z0)

12σ2z2
0

− δ3−12δz2
0+12z3

0

6z3
0

∂∆+(0)
∂µ

, for δ ∈ [z0, 2z0)

z2
0

6σ2 + 2
3
∂∆+(0)
∂µ

, for δ ≥ 2z0
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A.6 Cumulative Impulse Response under non-zero drift

It is convenient to split M(δ, µ) into several smaller parts. First, note that function m(z, µ)

can be written as:

m(z, µ) = −E
(∫ τ

0

(z(s)− x̄(µ)ds

∣∣∣∣ z(0) = z

)
= −E

(∫ τ

0

z(s)ds

∣∣∣∣ z(0) = z

)
︸ ︷︷ ︸

m̂(z,µ)

+x̄(µ)E
(
τ

∣∣∣∣ z(0) = z

)
︸ ︷︷ ︸

τ(z,µ)

= m̂(z, µ) + x̄(µ)τ(z, µ)

Function m̂(z, µ) is now the expected cumulative gap until first adjustment and is defined

by the following ODE:

z = −µm̂z(z, µ) +
σ2

2
m̂zz(z, µ) (A.3)

with boundary conditions m̂(z(µ), µ) = m̂(z(µ), µ) = 0. Function τ(z, µ) is the expected

time of first adjustment conditional on z(0) = z, and is also defined by ODE:

1 = −µτz(z, µ) +
σ2

2
τzz(z, µ)

and boundary conditions τ(z(µ), µ) = τ(z(µ), µ) = 0. Solution to (A.3) is:

m̂(z, µ) = C1 + C2e
2µ

σ2 z − 1

2µ
z2 − σ2

2µ2
z (A.4)

where C1 and C2 are determined by boundary conditions. Solution to τ(z, µ) is provided

in Chapter 5.5 of Stokey (2009).

Using this notation, express M(δ, µ) as follows:

M(δ, µ) =

∫ z(µ)−δ

z(µ)

m(z, µ)f(z+δ, µ)dz −
∫ z(µ)

z(µ)

m(z, µ)f(z, µ)dz

=

∫ z(µ)−δ

z(µ)

m̂(z, µ)f(z+δ, µ)dz︸ ︷︷ ︸
M̂(δ,µ)

+ x̄(µ)

∫ z(µ)−δ

z(µ)

τ(z, µ)f(z+δ, µ)dz︸ ︷︷ ︸
T (δ,µ)

−
∫ z(µ)

z(µ)

m̂(z, µ)f(z, µ)dz︸ ︷︷ ︸
M̂(0,µ)

− x̄(µ)

∫ z(µ)

z(µ)

τ(z, µ)f(z, µ)dz︸ ︷︷ ︸
T (0,µ)

= M̂(δ, µ)− M̂(0, µ) + x̄(µ)
[
T (δ, µ)− T (0, µ)

]
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and thus:

∂M(δ, 0)

∂µ
=
∂M̂(δ, 0)

∂µ
− ∂M̂(0, 0)

∂µ
+
∂x̄(0)

∂µ

[
T (δ, 0)− T (0, 0)

]
+ x̄(0)︸︷︷︸

=0

[∂T (δ, 0)

∂µ
− ∂T (0, 0)

∂µ

]
where x̄(0) = 0 due to symmetry of f(z, 0). Derivatives of M̂(δ, µ) and x̄(µ) are given by:

∂M̂(δ, 0)

∂µ
=
∂z(0)

∂µ
m̂(z(0)−δ, 0)

=0︷ ︸︸ ︷
f(z(0), 0) − ∂z(0)

∂µ

=0︷ ︸︸ ︷
m̂(z(0), 0) f(z(0)+δ, 0)

+

∫ z(0)−δ

z(0)

∂m̂(z, 0)

∂µ
f(z+δ, 0)dz +

∫ z(0)−δ

z(0)

m̂(z, 0)
∂f(z+δ, 0)

∂µ
dz

∂x̄(0)

∂µ
=
∂z(0)

∂µ
f(z(0), 0)︸ ︷︷ ︸

=0

− ∂z(0)

∂µ
f(z(0), 0)︸ ︷︷ ︸

=0

+

∫ z(0)

z(0)

∂f(z, 0)

∂µ
dz

where derivatives of integration boundaries are zero due to boundary conditions of m̂(z, 0)

and f(z, 0). Note that integrals have to split accordingly since stationary density f(z, 0)

is not differentiable at z = 0. Derivative of stationary density f(z, µ) with respect to drift

is provided in Appendix A.4. A direct computation yields:

∂x̄(0)

∂µ
=

2

3

∂z(0)

∂µ
+

1

3

∂ẑ(0)

∂µ
− z2

0

6σ2

Stokey (2009) shows that τ(z, 0) =
z2

0−z2

σ2 and thus computing T (δ, 0) gives:

T (δ, 0) =


1

12σ2z2
0

[
δ4 + 4δ3z0 − 12δ2z2

0 + 10z4
0

]
, for δ < z0

1
12σ2z2

0

[
−δ4 + 4δ3z0 − 16δz3

0 + 16z4
0

]
, for δ ∈ [z0, 2z0)

0, for δ ≥ 2z0

Computation of ∂M̂(δ,0)
∂µ

requires knowledge of ∂m̂(z,0)
∂µ

and m̂(z, 0). The latter solves (A.3)

for µ = 0 and is given by:

m̂(z, 0) =
z3 − z2

0z

3σ2

It remains to characterize derivative of m̂(z, µ) with respect to µ and then derivative of

CIR can be computed. First, note that m̂(z, µ) depends on µ both directly as can be

seen in (A.4), as well as indirectly through boundaries of inaction region that appear in
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expressions for C1 and C2:

C2 =
1

v(z(µ), µ)− v(z(µ), µ)

[
1

2µ

(
z(µ)2 − z(µ)2

)
+

σ2

2µ2

(
z(µ)− z(µ)

)]

C1 =
1

2µ
z(µ)2 +

σ2

2µ2
z(µ)− C2v(z(µ), µ)

where v(z, µ) = e
2µ

σ2 z. It is thus convenient to include the boundaries explicitly as arguments

of m̂(z, µ), so that m̂(z, µ) = m̂(z;µ, z(µ), z(µ)). Then:

∂m̂(z, µ)

∂µ

∣∣∣∣
µ=0

=
dm̂(z;µ, z, z)

dµ

∣∣∣∣
µ=0,z=z0,z=−z0

=

(
∂m̂(z; ·)
∂µ

+
∂m̂(z; ·)
∂z

∂z(µ)

∂µ
+
∂m̂(z; ·)
∂z

∂z(µ)

∂µ

) ∣∣∣∣
µ=0,z=z0,z=−z0

Derivatives with respect to boundaries z and z are relatively easy to obtain. Set µ = 0,

then:

m̂(z; 0, z, z) =
z3 − z3

3σ2
− z3 − z3

3σ2(z − z)
(z − z)

∂m̂(z;µ, z, z)

∂z

∣∣∣∣
µ=0,z=z0,z=−z0

= −z0z + z2
0

3σ2

∂m̂(z;µ, z, z)

∂z

∣∣∣∣
µ=0,z=z0,z=−z0

=
z0z − z2

0

3σ2

Obtaining derivative of m̂(z, µ) is somewhat more involved. Setting z = z0, z = −z0:

m̂(z;µ, z0,−z0) =
2z0σ

2β(z, µ) + µγ(µ)(z2
0 − z2) + σ2γ(µ)(z0 − z)

2µ2γ(µ)

where γ(µ) = v(z0, µ) − v(−z0, µ) and β(z, µ) = v(z, µ) − v(z0, µ). Differentiating with

respect to µ and collecting terms:

∂m̂(z;µ, z, z)

∂µ

∣∣∣∣
µ=0,z=z0,z=−z0

= (A.5)

=
2z0σ

2
(
µγ(µ)β′µ(z, µ)− 2γ(µ)β(z, µ)− µγ′(µ)β(z, µ)

)
− µγ(µ)2(z2

0 − z2)− 2σ2γ(µ)2(z0 − z)

2µ3γ(µ)2

Note that as µ → 0, γ(µ) → 0 and β(z, µ) → 0. In addition, derivatives of γ(µ) and
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β(z, µ) with respect to µ evaluated at µ = 0 are given by:

γk(0) =


2k+1

σ2k z
k
0 for k odd

0 for k even

βkµ(z, 0) =
2k

σ2k
(zk − zk0)

This implies that evaluating (A.5) at µ = 0 is not possible as both denominator and

numerator are zero at µ = 0. Applying L’Hospital’s rule five times provides the result:

∂m̂(z;µ, z, z)

∂µ

∣∣∣∣
µ=0,z=z0,z=−z0

=
(z2

0 − z2)2

6σ4

Collecting all the terms gives the derivative of interest:

∂m̂(z, µ)

∂µ

∣∣∣∣
µ=0

=
(z2

0 − z2)2

6σ4
− 2z2

0

3σ2

∂z(µ)

∂µ

Now all necessary ingredients for the derivative of cumulative impulse response with respect

to drift µ are collected and direct computation yields:

∂M(δ, µ)

∂µ

∣∣∣∣
µ=0

=



1
360σ4z2

0

[
−4δ6 − 18δ5z0 + 45δ4z2

0 + 20δ3z3
0 − 60δ2z4

0

]
− 1

180σ2z3
0

[
3δ5 + 10δ4z0

]∂∆+(0)
∂µ

, for δ < z0

1
360σ4z2

0

[
4δ6 − 18δ5z0 + 15δ4z2

0 + 20δ3z3
0 − 48δz5

0 + 10z6
0

]
− 1

180σ2z3
0

[
3δ5 − 10δ4z0 + 80δz4

0 − 60z5
0

]∂∆+(0)
∂µ

, for δ ∈ [z0, 2z0)

− z4
0

60σ4 − z2
0

5σ2

∂∆+(0)
∂µ

, for δ ≥ 2z0
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B Proofs

B.1 Some useful expressions

I provide several expressions which will be used later. Let w1 = ex−e−x and w2 = ex+e−x

where x > 0. Using Tailor expansion one obtains following results:

w1 = 2
∞∑

i=1,3,5...

xi

i!
> 0 (B.1)

w2 = 2 + 2
∞∑

i=2,4,6...

xi

i!
> w1 (B.2)

w1w2 = e2x − e−2x = 2
∞∑

i=1,3,5...

2ixi

i!
(B.3)

w2
1 = e2x + e−2x − 2 = 2

∞∑
i=2,4,6...

2ixi

i!
(B.4)

w2
2 = e2x + e−2x + 2 = 4 + 2

∞∑
i=2,4,6...

2ixi

i!
(B.5)

w3
1 = e3x − e−3x − 3w1 = 2

∞∑
i=1,3,5...

3ixi

i!
− 3w1 (B.6)

w2
1w2 = e3x + e−3x − w2 = 2 + 2

∞∑
i=2,4,6...

3ixi

i!
− w2 (B.7)

B.2 Proof of Proposition 1

First, let’s show that ∂z
∂µ

∣∣
µ=0

> 0. Denote x := αz0:

∂z

∂µ

∣∣∣∣
µ=0

=
4x2 + xw1w2 − 2w2

1

2ρ(xw1w2 − w2
1)

Firstly, using expressions from Appendix B.1, one can show that denominator is positive:

2ρ(xw1w2 − w2
1) > 0 ⇐⇒ xw2 − w1 > 0 ⇐⇒

∞∑
i=3,5,7...

xi

(i− 1)!
−

∞∑
i=3,5,7...

xi

i!
> 0

where last inequality is trivially satisfied. Secondly, similar logic applies to the numerator:

4x2 + xw1w2 − 2w2
1 > 0 ⇐⇒ 4x2 +

∞∑
i=2,4,6...

2ixi

(i− 1)!
−

∞∑
i=2,4,6...

2i+2xi

i!
> 0

⇐⇒
∞∑

i=6,8,10...

2ixi

(i− 1)!
−

∞∑
i=6,8,10...

2i+2xi

i!
> 0
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where last line follows since 2i

(i−1)!
> 2i+2

i!
for all i > 4. Thus ∂z

∂µ

∣∣
µ=0

> 0 which concludes

the proof of the first part of Proposition 1.

Now let’s show that ∂ẑ
∂µ

∣∣
µ=0

> ∂z
∂µ

∣∣
µ=0

. Using expressions for these derivatives and the

same substitution (x := αz0) this amounts to showing:

2(x2w2 + xw1 − w2
1)(xw2 − w1)− (4x2 + xw1w2 − 2w2

1)(2x− w1)

2ρw1(2x− w1)(xw2 − w1)
> 0

Note that denominator is negative since 2x− w1 < 0 (trivial) and xw2 − w1 > 0 (shown

above). Thus it remains to show that numerator (Num) is also negative. Opening the

brackets, collecting terms and dividing by x yields:

Num = 2x2w2
2 − w2

1w2 + 2w2
1 − 8x2 − 2xw1w2 + 4xw1

Plugging expressions from Appendix B.1:

Num = 2x2

(
4 + 2

∞∑
i=2,4,6...

2ixi

i!

)
−

(
2 + 2

∞∑
i=2,4,6...

3ixi

i!

)
+

(
2 + 2

∞∑
i=2,4,6...

xi

i!

)

+ 4
∞∑

i=2,4,6...

2ixi

i!
− 8x2 − 4x

∞∑
i=1,3,5...

2ixi

i!
+ 8x

∞∑
i=1,3,5...

xi

i!

= 8x2 +
16

2
x4 +

∞∑
i=6,8,10...

2ixi

(i− 2)!
− 2

9

2
x2 − 2

81

24
x4 − 2

∞∑
i=6,8,10...

3ixi

i!

+ 2
1

2
x2 + 2

1

24
x4 + 2

∞∑
i=6,8,10...

xi

i!
+ 4

4

2
x2 + 4

16

24
x4 + 4

∞∑
i=6,8,10...

2ixi

i!
− 8x2

− 2
4

1
x2 − 2

16

6
x4 − 2

∞∑
i=6,8,10...

2ixi

(i− 1)!
+ 8x2 + 8

1

6
x4 + 8

∞∑
i=6,8,10...

xi

(i− 1)!

=
∞∑

i=6,8,10...

[
2i

(i− 2)!
− 2

3i

i!
+

2

i!
+

2i+2

i!
− 2i+1

(i− 1)!
+

8

(i− 1)!

]
xi

Thus if 2
i!

(
2i−1i(i− 1)− 3i + 1 + 2i+1− 2ii+ 4i

)
≤ 0 for all i = {6, 8, 10, . . . } and inequality

is strict for some i, then Num < 0. Define:

q(i) = 2i−1i(i− 1)− 3i + 1 + 2i+1 − 2ii+ 4i
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and note that q(6) = 0 and q(8) < 0. Now split q(i) into two parts:

q1(i) = 2i−1i(i− 1) + 2i+1 − 3i

q2(i) = 1 + 4i− 2ii

q(i) = q1(i) + q2(i)

It is easy to see that q2(i) < 0 for all i > 3. Let’s show by induction that q1(i) is negative

for all i ≥ 10. First note that q1(10) < 0. Now assume q1(i) < 0. Rearranging, this

implies:

i(i− 1) < 2

[(
3

2

)i
− 2

]
Then for i+ 1 it holds:

(i+ 1)i = i(i− 1)
i+ 1

i− 1
< 2

[(
3

2

)i
− 2

]
i+ 1

i− 1
< 2

[(
3

2

)i+1

− 2

]

where the first inequality is due to induction assumption and the last one is true for all

i > 5. Thus q1(i) < 0 for all i ≥ 10 and same applies to q(i), which concludes the proof.

B.3 Lemma 1

Let ρ, κ, σ > 0. Let ∆+(µ) = ẑ(µ)− z(µ). Then:

∂∆+(0)

∂µ
<

1

10

z2
0

σ2

Proof. Using expressions for ∂z(0)
∂µ

and ∂ẑ(0)
∂µ

, and denoting x := αz0, the above expressions

can be written as:

10(4x2 + xw1w2 − 2w2
1)(2x− w1)− 20(x2w2 + xw1 − w2

1)(xw2 − w1) + w1(xw2 − w1)(2x− w1)x2

20ρw1(2x− w1)(xw2 − w1)
> 0

Given that denominator is negative (as shown in proof of Proposition 1), it is required to

show that numerator is positive. Opening the brackets, collecting terms and dividing by

x, gives that numerator (Num) is negative if:

Num = 80x2−20w2
1+10w2

1w2+x(20w1w2−40w1+w3
1)−x2(20w2

2+2w2
1+w2

1w2)+2x3w1w2 < 0
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Using expressions from Appendix B.1:

Num = 80x2 − 40
∞∑

i=2,4,6...

2ixi

i!
+ 20

∞∑
i=2,4,6...

3ixi

i!
− 20

∞∑
i=2,4,6...

xi

i!

+ x

(
40

∞∑
i=1,3,5...

2ixi

i!
+ 2

∞∑
i=1,3,5...

3ixi

i!
− 86

∞∑
i=1,3,5...

xi

i!

)

− x2

(
80 + 44

∞∑
i=2,4,6...

2ixi

i!
+ 2

∞∑
i=2,4,6...

3ixi

i!
− 2

∞∑
i=2,4,6...

xi

i!

)
+ 4x3

∞∑
i=1,3,5...

2ixi

i!

= 80x2 − 40
4

2
x2 − 40

∞∑
i=4,6,8...

2ixi

i!
+ 20

9

2
x2 + 20

∞∑
i=4,6,8...

3ixi

i!
− 20

1

2
x2 − 20

∞∑
i=4,6,8...

xi

i!

+ 40
2

1
x2 + 20

∞∑
i=4,6,8...

2ixi

(i− 1)!
+ 2

3

1
x2 + 2

∞∑
i=4,6,8...

3i−1xi

(i− 1)!
− 86x2 − 86

∞∑
i=4,6,8...

xi

(i− 1)!

− 80x2 − 11
∞∑

i=4,6,8...

2ixi

(i− 2)!
− 2

∞∑
i=4,6,8...

3i−2xi

(i− 2)!
+ 2

∞∑
i=4,6,8...

xi

(i− 2)!
+ 2

∞∑
i=4,6,8...

2i−2xi

(i− 3)!

=
∞∑

i=4,6,8...

2xi

i!

[
10(3i−2i+1−1)+i(10·2i+3i−1−43)+i(i−1)(1−11·2i−1−3i−2)+i(i−1)(i−2)2i−2︸ ︷︷ ︸

q(i)

]

Thus if q(i) ≤ 0 for all i ∈ {4, 6, 8...} and q(i) < 0 for some i ∈ {4, 6, 8...}, then Num < 0

and Lemma 1 is proven. A direct computation gives that q(4) = q(6) = q(8) = 0 and

q(10) < 0. Let’s show that q(i) < 0 for all i ≥ 12. Note that q(i) < 0 if and only if:

10(3i−2i+1−1)︸ ︷︷ ︸
q1(i)

+ i(10·2i+3i−1−43)︸ ︷︷ ︸
q2(i)

+ i(i−1)(i−2)2i−2︸ ︷︷ ︸
q3(i)

< i(i−1)(3i−2 + 11·2i−1− 1)︸ ︷︷ ︸
q4(i)

Let’s establish relations between these terms:

• q1(i) < 1
2
q4(i):

q1(i) <
1

2
q4(i) ⇐⇒ 20(3i−2i+1−1) < i(i−1)(3i−2 + 11·2i−1− 1)

⇐⇒ 3i−2(180− i(i− 1)) + i(i− 1)︸ ︷︷ ︸
<0 for i≥12

−2i−1(80 + 11i(i− 1))− 20︸ ︷︷ ︸
<0

< 0

Term in second bracket is trivially negative. To see why term in the first bracket

is negative as well, consider a proof by induction. If i = 12, then 3i−2(180− i(i−
1)) + i(i − 1) < 0. Suppose now that for some i, 3i−2(180 − i(i − 1)) < −i(i − 1).
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Consider i+ 1:

3i−1(180− (i+ 1)i) < 3i−1(180− i(i− 1)) = 3 · 3i−2(180− i(i− 1))

< −3i(i− 1) < −i(i+ 1)︸ ︷︷ ︸
for i>2

where the second line follows from the induction assumption and the last one

inequality is true for all i > 2. As a result, q1(i) < 1
2
q4(i) for all i ≥ 12.

• q2(i) < 1
4
q4(i):

q2(i) <
1

4
q4(i) ⇐⇒ 4(10 · 2i + 3i−1 − 43) < (i− 1)(3i−2 + 11 · 2i−1 − 1)

⇐⇒ 3i−2(13− i) + i︸ ︷︷ ︸
<0 for i≥14

< 2i−1(11i− 91)︸ ︷︷ ︸
>0 for i≥9

+173

The right hand side is trivially positive for i ≥ 9. To see why term on the left hand

side is negative, consider i ≥ 14 and rewrite it as:

3i−2(13− i) + i < 0 ⇐⇒ 3i−2 >
i

i− 13

Here, i
i−13

is a decreasing function of i, whereas 3i−2 is increasing. In addition,

the inequality is true for i = 14 and thus it is true for all i ≥ 14. Finally, direct

computation shows that q2(i) < 1
4
q4(i) for i = 12 and, as a result, q2(i) < 1

4
q4(i) for

all i ≥ 12.

• q3(i) < 1
5
q4(i):

q3(i) <
1

5
q4(i) ⇐⇒ 2i−2(5i− 22) < 3i−2 − 1

It suffices to show that 2i−25i < 3i−2 − 1, which can be proven by induction. First,

it holds for i = 14. Now assume that it holds for some i and consider i+ 1:

2i−15(i+ 1) = 2i−25i
2(i+ 1)

i
< (3i−2 − 1)

2(i+ 1)

i
< 3i−1 − 1︸ ︷︷ ︸

for i≥2

where the first inequality follows from induction assumption and the second one can

be seen by multiplying both sides with i and collecting terms, so that it is equivalent

to 3i−2(2− i) < i+ 2 which holds trivially if i ≥ 2. Finally, direct computation shows

that q3(i) < 1
5
q4(i) for i = 12 and so q3(i) < 1

5
q4(i) for all i ≥ 12.

It follows that q1(i) + q2(i) + q3(i) < 19
20
q4(i) < q4(i) for all i ≥ 12 and thus q(i) < 0 for all

i ≥ 8, which concludes the proof.
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B.4 Lemma 2

Let ρ, κ, σ > 0. If µ is small and non-zero, then the average price gap in the steady state

x̄(µ) is not equal to zero.

Proof. Due to the symmetry of the stationary distribution under zero drift, x̄(0) = 0.

It thus suffices to show that the derivative ∂x̄(0)
∂µ

is not equal to zero. Recall from Appendix

A.6 that:

∂x̄(0)

∂µ
=

2

3

∂z(0)

∂µ
+

1

3

∂ẑ(0)

∂µ
− z2

0

6σ2

=
∂z(0)

∂µ
+

1

3

∂∆+(0)

∂µ
− z2

0

6σ2

where ∆+(µ) = ẑ(µ)− z(µ). From Lemma 1 it follows:

∂x̄(0)

∂µ
<
∂z(0)

∂µ
+

1

30

z2
0

σ2
− z2

0

6σ2

=
∂z(0)

∂µ
− 2

15

z2
0

σ2

Let me now show that ∂z(0)
∂µ
− 2

15

z2
0

σ2 < 0. Using the expression for ∂z(0)
∂µ

, rearranging terms

and denoting x := αz0, it is equivalent to showing that:

60x2 + 15xw1w2 − 30w2
1 − 2x3w1w2 + 2x2w2

1

30ρ(xw1w2 − w2
1)

< 0

Note that the denominator is positive, as shown in the proof of Proposition 1. It thus

suffices to show that the numerator is negative:

Num = 60x2 + 15xw1w2 − 30w2
1 − 2x3w1w2 + 2x2w2

1 < 0

Using the expansion formulas from Appendix B.1, rewrite the numerator as:

Num = 60x2 + 30x
∞∑

i=1,3,5...

2ixi

i!
− 60

∞∑
i=2,4,6...

2ixi

i!
− 4x3

∞∑
i=1,3,5...

2ixi

i!
+ 4x2

∞∑
i=2,4,6...

2ixi

i!

= 60x2 + 15
∞∑

i=2,4,6...

2ixi

(i− 1)!
− 60

∞∑
i=2,4,6...

2ixi

i!
−

∞∑
i=4,6,8...

2i−1xi

(i− 3)!
+

∞∑
i=4,6,8...

2ixi

(i− 2)!

= 60x2 + 60x2 − 60
4

2
x2 + 15

∞∑
i=4,6,8...

2ixi

(i− 1)!
− 60

∞∑
i=4,6,8...

2ixi

i!
−

∞∑
i=4,6,8...

2i−1xi

(i− 3)!
+

∞∑
i=4,6,8...

2ixi

(i− 2)!

=
∞∑

i=4,6,8...

2i−1xi

i!

[
30i− 120− i(i− 1)(i− 2) + 2i(i− 1)︸ ︷︷ ︸

q(i)

]

67



If q(i) ≤ 0 for all i ∈ {4, 6, 8...} and q(i) < 0 for some of these i, it would follow that

Num < 0 and Lemma 2 is proven.

Note first that q(4) = q(6) = 0, whereas q(8) < 0 and q(10) < 0. Let me prove by

induction that q(i) + 120 < 0 for any i ≥ 10. Suppose that for some i, q(i) + 120 < 0.

Consider i+ 1:

q(i+ 1) + 120 = 30(i+ 1)− (i+ 1)i(i− 1) + 2(i+ 1)i < 0 ⇐⇒

30− i(i− 1) + 2i < 0 ⇐⇒ 30− i(i− 3) < 0

The last inequality is trivially satisfied for any i ≥ 10, which concludes the proof.

B.5 Proof of Proposition 2

First, for convenience, denote Θ̂(δ) = ∂Θ(δ,µ)
∂µ

∣∣
µ=0

. Consider δ > 0. Note that:

Θ̂(δ) =


0, for δ = 0

z2
0

4σ2 − 1
6
∂∆+(0)
∂µ

, for δ = z0

z2
0

6σ2 + 2
3
∂∆+(0)
∂µ

, for δ ≥ 2z0

And thus Θ̂(z0) > 0 by Lemma 1, and Θ̂(δ) > 0 for all δ ≥ 2z0 since ∂∆+(0)
∂µ

> 0 by

Proposition 1.

Consider now δ ∈ (0, z0). For such δ:

Θ̂′(δ) = δ

[
6z2

0 − 2δ2 − 3δz0

6σ2z2
0

− δ

2z3
0

∂∆+(0)

∂µ

]
> δ

[
6z2

0 − 2z2
0 − 3z2

0

6σ2z2
0

− z0

2z3
0

∂∆+(0)

∂µ

]
= δ

[
1

6σ2
− 1

2z2
0

∂∆+(0)

∂µ

]
> 0

where first inequality is due to δ < z0 and second one due to Lemma 1. It follows that

Θ̂(δ) is strictly increasing over (0, z0) and since Θ̂(0) = 0 it follows that Θ̂(δ) > 0 for all

δ ∈ (0, z0].

Consider now δ ∈ (z0, 2z0). For such δ:

Θ̂′(δ) =
2δ3 − 3δ2z0 − 6δz2

0 + 8z3
0

6σ2z2
0

− δ2 − 4z2
0

2z3
0

∂∆+(0)

∂µ

so that lim
δ↓z0

Θ̂′(δ) = z0

6σ2 + 3
2z0

∂∆+(0)
∂µ

> 0. Given that Θ̂(z0), Θ̂(2z0) > 0, the only case when
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Θ̂(δ) is negative for some δ ∈ (z0, 2z0) is if its derivative Θ̂′(δ) becomes negative and then

again positive, i.e. switches its sign at least twice. To see if that is the case, consider

second and third derivatives:

Θ̂′′(δ) =
δ2 − δz0 − z2

0

σ2z2
0

− δ

z3
0

∂∆+(0)

∂µ

Θ̂′′′(δ) =
2δ − z0

σ2z2
0

− 1

z3
0

∂∆+(0)

∂µ
>

z0

σ2z2
0

− 1

z3
0

∂∆+(0)

∂µ
> 0

where first inequality follows since δ > z0 and second one from Lemma 1. Third derivative

is strictly positive for all δ ∈ (z0, 2z0) and thus second derivative is monotonic and can

only cross zero at most once. It follows that first derivative Θ̂′(δ) can switch its sign at

most once and thus Θ̂(δ) is strictly positive for all δ ∈ (z0, 2z0). Given previous results, it

follows that Θ(δ,µ)
∂µ

∣∣
µ=0

> 0 for all δ > 0. Noting that impact effect is symmetric around

zero drift (Θ(−δ, µ) = −Θ(δ,−µ)) provides that Θ(−δ,0)
∂µ

= Θ(δ,0)
∂µ

> 0 which concludes the

proof.

B.6 Proof of Proposition 3

Let m̂(z, t) denote the expected cumulative deviation of g from its steady state until time

t, conditional on initial value z(0) = z:

m̂(z, t) = E
(∫ t

0

(g(z(s))− ḡ)ds

∣∣∣∣z(0) = z

)
Denote m̂(z) = lim

t→∞
m̂(z, t) and thus:

CIRF (F0) =

∫ z

z

m̂(z)dF0(z)

Let τi be the i-th adjustment and let ta ∧ tb = min{ta, tb}. Fix a staring value z and

consider the cumulated deviation of g form its steady state until t > 0, writing all the

random variables explicitly as a function of the underlying outcome ω:

∫ t

0

(g(z(s, ω))− ḡ)ds =

∫ τ1(ω)∧t

0

(g(z(s, ω))− ḡ)ds+
N−1∑
i=1

∫ τi+1(ω)∧t

τi(ω)∧t
(g(z(s, ω))− ḡ)ds

+

∫ t

τN (ω)∧t
(g(z(s, ω))− ḡ)ds

for some fixed N ≥ 1. Take the limit of the above expression as N → ∞. For a fixed

horizon t and outcome ω there will be n(t, ω) adjustments between time 0 and t. Let
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N(t, ω) = max{1, n(t, ω)}. Then:

∫ t

0

(g(z(s, ω))− ḡ)ds =

∫ τ1(ω)∧t

0

(g(z(s, ω))− ḡ)ds+

N(t,ω)−1∑
i=1

∫ τi+1(ω)

τi(ω)

(g(z(s, ω))− ḡ)ds

+

∫ t

τN(t,ω)(ω)∧t
(g(z(s, ω))− ḡ)ds

Applying conditional expectation (Ez(·) = E(·|z(0, ω) = z)) yields an expression for

m̂(z, t):

m̂(z, t) = Ez

(∫ τ1(ω)∧t

0

(g(z(s, ω))− ḡ)ds

)

+
∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

(g(z(s, ω))− ḡ)ds

∣∣∣∣N(t, ω) ≥ i+ 1

)
Pz (N(t, ω) ≥ i+ 1)

+ Ez

(∫ t

τN(t,ω)(ω)∧t
(g(z(s, ω))− ḡ)ds

)

Where Pz (N(t, ω) ≥ i+ 1) is the probability that number of adjustments until t exceeds

i+ 1 conditional on z(0, ω) = z. Note that once we take expectation with respect to ω,

the finite sum from the previous expression becomes infinite. That is due to the fact that

for any t > 0 and any M there exists ω such that N(t, ω) > M , which follows from the

fact that increments of z(t) are normally distributed. Each summand i is the expected

cumulated deviation between i-th and (i+ 1)-th adjustment, conditional on there being at

least i+ 1 adjustments, and weighted with corresponding probability.

Finally, take the limit as t→∞. For every z and every i ∈ R+, Pz (N(t, ω) ≥ i+ 1)

converges to one and the conditional expectation in second line converges to unconditional

one. Also N(t, ω) converges to n(t, ω), τ1(ω) ∧ t converges to τ1(ω) and τN(t,ω)(ω) ∧ t→
τn(t,ω)(ω). As has been shown in Baley and Blanco (2020), Ez

(∫ τi+1(ω)

τi(ω)
(g(z(s, ω))− ḡ)ds

)
= 0 for all i, and thus:

m̂(z) = lim
t→∞

m̂(z, t) = m(z) + m̃(z)

where

m(z) = E

(∫ τ1(ω)

0

(g(z(s, ω))− ḡ)ds

∣∣∣∣z(0, ω) = z

)

m̃(z) = lim
t→∞

E

(∫ t

τn(t,ω)(ω)

(g(z(s, ω))− ḡ)ds

∣∣∣∣z(0, ω) = z

)

70



Note that due to Markov property, m̃(z) does not depend on z since after the first

adjustment initial condition does not matter and expectation becomes unconditional, so

that m̃(z) = m̃ = lim
t→∞

E
(∫ t

τn(t,ω)(ω)
(g(z(s, ω))− ḡ)ds

)
. Thus:

CIRF (F0) =

∫ z

z

m(z)dF0(z) + m̃

which concludes the proof.

B.7 Proof of Proposition 4

Let m̂(r, z, t) denote the expected discounted cumulative deviation of g from its steady

state until time t, conditional on initial value z(0) = z:

m̂(r, z, t) = E
(∫ t

0

e−rs(g(z(s))− ḡ)ds

∣∣∣∣z(0) = z

)
with r > 0. Denote m̂(r, z) = lim

t→∞
m̂(r.z, t) so that discounted cumulative impulse response

is given by:

DCIRF (r, F0) =

∫ z

z

m̂(r, z)dF0(z)

Let τi be the i-th adjustment and let ta ∧ tb = min{ta, tb}. Fix a staring value z and

consider the discounted cumulated deviation of g form its steady state until t > 0, writing

all the random variables explicitly as a function of the underlying outcome ω:

∫ t

0

e−rs(g(z(s, ω))−ḡ)ds =

∫ τ1(ω)∧t

0

e−rs(g(z(s, ω))−ḡ)ds+
N−1∑
i=1

∫ τi+1(ω)∧t

τi(ω)∧t
e−rs(g(z(s, ω))−ḡ)ds

+

∫ t

τN (ω)∧t
e−rs(g(z(s, ω))−ḡ)ds

for some fixed N ≥ 1. Take the limit of the above expression as N → ∞. For a fixed

horizon t and outcome ω there will be n(t, ω) adjustments between time 0 and t. Let

N(t, ω) = max{1, n(t, ω)}. Then:

∫ t

0

e−rs(g(z(s, ω))−ḡ)ds =

∫ τ1(ω)∧t

0

e−rs(g(z(s, ω))−ḡ)ds+

N(t,ω)−1∑
i=1

∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))−ḡ)ds

+

∫ t

τN(t,ω)(ω)∧t
e−rs(g(z(s, ω))−ḡ)ds
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Applying conditional expectation (Ez(·) = E(·|z(0, ω) = z)) yields an expression for

m̂(z, t):

m̂(r, z, t) = Ez

(∫ τ1(ω)∧t

0

e−rs(g(z(s, ω))− ḡ)ds

)

+
∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

∣∣∣∣N(t, ω) ≥ i+ 1

)
Pz (N(t, ω) ≥ i+ 1)

+ Ez

(∫ t

τN(t,ω)(ω)∧t
e−rs(g(z(s, ω))− ḡ)ds

)

Where Pz (N(t, ω) ≥ i+ 1) is the probability that number of adjustments until t exceeds

i+ 1 conditional on z(0, ω) = z. Note that once we take expectation with respect to ω,

the finite sum from the previous expression becomes infinite. That is due to the fact that

for any t > 0 and any M there exists ω such that N(t, ω) > M , which follows from the

fact that increments of z(t) are normally distributed. Each summand i is the expected

cumulated deviation between i-th and (i+ 1)-th adjustment, conditional on there being at

least i+ 1 adjustments, and weighted with corresponding probability.

Finally, take the limit as t→∞. For every z and every i ∈ R+, Pz (N(t, ω) ≥ i+ 1)

converges to one and the conditional expectation in second line converges to unconditional

one. Also N(t, ω) converges to n(t, ω), τ1(ω) ∧ t converges to τ1(ω) and τN(t,ω)(ω) ∧ t→
τn(t,ω)(ω). Due to r > 0, the last summand converges to zero and thus:

m̂(r, z) = lim
t→∞

m̂(r, z, t) =

m(r,z)︷ ︸︸ ︷
Ez

(∫ τ(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)

+
∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

)

Because of discounting, expected deviations between adjustments are not zero anymore.

However one can still characterize them. First, consider some i ≥ 1 and rewrite as:

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

)
= Ez

(
e−rτi(ω)

∫ τi+1(ω)−τi(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)

Note that due to strong Markov property, expectation of the integral does not depend on i

or z, whereas expectation of e−τi(ω) depends on both. Thus the two terms are independent
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and we can split the expectation:

Ez

(
e−rτi(ω)

∫ τi+1(ω)−τi(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)
= Ez

(
e−rτi(ω)

)
· Eẑ

(∫ τ(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

)
︸ ︷︷ ︸

m(r,ẑ)

Now second term is the expectation of cumulated deviations until first adjustment con-

ditional on starting at the return point: z(0) = ẑ. Denote the first term for i = 1 by

q(r, z) = Ez
(
e−rτ(ω)

)
. Then for any i ≥ 1:

Ez
(
e−rτi(ω)

)
= Ez

(
e−rτ1(ω) · e−r(τ2(ω)−τ1(ω)) · · · e−r(τi(ω)−τi−1(ω))

)
= Ez

(
e−rτ1(ω)

)
· Ez

(
e−r(τ2(ω)−τ1(ω))

)
· · ·Ez

(
e−r(τi(ω)−τi−1(ω))

)
= Ez

(
e−rτ(ω)

)︸ ︷︷ ︸
q(r,z)

·Eẑ
(
e−rτ(ω)

)︸ ︷︷ ︸
q(r,ẑ)

· · ·Eẑ
(
e−rτ(ω)

)︸ ︷︷ ︸
q(r,ẑ)

= q(r, z)q(r, ẑ)i−1

where second and third lines follow due to strong Markov property of z(t). Because of

this property, times between adjustments are independent (2nd line) and initial condition

z(0) = z is irrelevant once there was an adjustment (3rd line). Thus:

∞∑
i=1

Ez

(∫ τi+1(ω)

τi(ω)

e−rs(g(z(s, ω))− ḡ)ds

)
=
∞∑
i=1

q(r, z)q(r, ẑ)i−1m(r, ẑ) =
q(r, z)

1− q(r, ẑ)
m(r, ẑ)

and so:

DCIRF (r, F0) =

∫ z

z

m(r, z)dF0(z) +
m(r, ẑ)

1− q(r, ẑ)

∫ z

z

q(r, z)dF0(z)

Now in order to obtain undiscounted CIRF, it remains to take the limit as r → 0. Note

that lim
r→0

m(r, z) = m(z) where m(z) = E
(∫ τ

0
(g(z(s))− ḡ)ds

∣∣z(0) = z
)

and lim
r→0

q(r, z) = 1.

This implies that second integral converges to 1. In addition, since m(ẑ) = 0, as shown in

Baley and Blanco (2020), lim
r→0

m(r, ẑ) = 0, and the coefficient in front of the second integral

converges to some finite number. We can further simplify the expression by noting that:

q(r, z) = Ez
(
e−rτ(ω)

)
= 1− rEz

(∫ τ(ω)

0

e−rsds

)

and since lim
r→0

Ez
(∫ τ(ω)

0
e−rsds

)
= Ez (τ(ω)), for small values of r, 1− q(r, ẑ) behaves like

rEz (τ(ω)). Thus CIRF can be expressed as:

CIRF (F0) = lim
r→0

DCIRF (r, F0) =

∫ z

z

m(z)dF0(z) +
1

E
(
τ(ω)

∣∣z(0, ω) = ẑ
) lim
r→0

m(r, ẑ)

r
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where

m(z) = E

(∫ τ(ω)

0

(g(z(s, ω))− ḡ)ds

∣∣∣∣ z(0, ω) = z

)

m(r, ẑ) = E

(∫ τ(ω)

0

e−rs(g(z(s, ω))− ḡ)ds

∣∣∣∣ z(0, ω) = ẑ

)

which concludes the proof.

B.8 Proof of Proposition 5

First, for convenience, denote M̂(δ) = ∂M(δ,µ)
∂µ

∣∣
µ=0

and consider δ > 0. Note that:

M̂(δ) =


0, for δ = 0

− 17z4
0

360σ4 − 13z2
0

180σ2

∂∆+(0)
∂µ

, for δ = z0

− z4
0

60σ4 − z2
0

5σ2

∂∆+(0)
∂µ

, for δ ≥ 2z0

so that M̂(z0) < 0 and M̂(δ) < 0 for all δ ≥ 2z0 since ∂∆+(0)
∂µ

> 0 by Proposition 1.

Now let’s show that M̂(δ) < 0 for any δ > 0. First, consider δ ∈ (0, z) and denote by

M̂k
−(z0) the limit of k-th derivative of M̂(δ) for δ ↑ z0. The proof consists of five claims.

To ease exposition, proofs of the claims are provided at the end of this section.

1a. M̂V (0) < 0 and M̂V
− (z) < 0. In addition, M̂V (δ) is linear for δ ∈ (0, z0) and thus

M̂V (δ) < 0 for all δ ∈ (0, z0). This implies that M̂ IV (δ) is strictly decreasing for

δ ∈ (0, z0).

2a. M̂ IV (0) > 0 and M̂ IV
− (z) < 0. Together with (1a) this implies that M̂ IV (δ) crosses

zeros once in (0, z0) and thus M̂ III(δ) is strictly concave and singe-peaked in (0, z0).

3a. M̂ III(0) > 0 and M̂ III
− (z) < 0. Together with (2a) it implies that M̂ III(δ) crosses

zeros once in (0, z0) so that M̂ II(δ) first increases and then decreases as δ goes from

0 to z0.

4a. M̂ II(0) < 0 and M̂ II
− (z) > 0. Together with (3a) it implies that M̂ II(δ) crosses zero

once in (0, z0) and thus M̂ I(δ) first decreases and then increases as δ goes from 0 to

z0.

5a. M̂ I(0) = 0. Together with (4a) this implies that M̂ I(δ) crosses zero at most once in

(0, z0).
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Finally, since M̂(0) = 0, M̂(z0) < 0, M̂ I(0) = 0, M̂ II(0) < 0 and M̂ I(δ) crosses zero at

most once in (0, z0), it follows that M̂(δ) < 0 for all δ ∈ (0, z0). In order to have M̂(δ) ≥ 0

for some δ ∈ (0, z0), it must be the case that M̂ I(δ) crosses zero at least twice, which

contradicts (5a).

Now consider δ ∈ (z0, 2z0) and denote by M̂k
+(z0) the limit of k-th derivative of M̂(δ)

for δ ↓ z0. The proof consists of five claims, proofs of which are also delegated to the end

of this section.

1b. M̂V
+ (z0) > 0 and M̂V (2z0) > 0. In addition, M̂V (δ) is linear for δ ∈ (z0, 2z0) and

thus M̂V (δ) > 0 for all δ ∈ (z0, 2z0). This implies that M̂ IV (δ) is strictly increasing

for δ ∈ (z0, 2z0).

2b. M̂ IV
+ (z0) < 0 and M̂ IV (2z0) > 0. Together with (1b) this implies that M̂ IV (δ)

crosses zeros once in (z0, 2z0) and thus M̂ III(δ) is strictly convex in (z0, 2z0).

3b. M̂ III
+ (z0) < 0 and M̂ III(2z0) > 0. Together with (2b) it implies that M̂ III(δ) crosses

zeros once in (z0, 2z0) so that M̂ II(δ) first decreases and then increases as δ goes

from z0 to 2z0.

4b. M̂ II
+ (z0) > 0 and M̂ II(2z0) = 0. Together with (3b) it implies that M̂ II(δ) crosses

zero once in (z0, 2z0) and thus M̂ I(δ) first increases and then decreases as δ goes

from z0 to 2z0.

5b. M̂ I(2z0) = 0. Together with (4b) and (3b) this implies that M̂ I(δ) crosses zero at

most once in z0 to 2z0.

Finally, since M̂(z0) < 0, M̂(2z0) < 0, M̂ I(2z0) = 0, M̂ II(2z0) = 0, M̂ III(2z0) > 0 and

M̂ I(δ) crosses zero at most once in (z, 2z), it follows that M̂(δ) < 0 for all δ ∈ (z, 2z). In

order to have M̂(δ) ≥ 0 for some δ ∈ (z, 2z), it must be the case that M̂ I(δ) crosses zero

at least twice, which contradicts (5b).

Altogether, this implies that M̂(δ) < 0 for all δ > 0. Note that M(δ, µ) is symmetric

in the sense that M(−δ, µ) = −M(δ,−µ), so that ∂M(−δ,0)
∂µ

= ∂M(δ,0)
∂µ

< 0, which concludes

the proof. Below I prove claims used above.

Consider δ > 0. Since M̂(δ) is a polynomial of degree 6, it follows that M̂V (δ) is a
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linear function. Direct computation yields:

M̂V (0) = − 6

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂V
− (z0) = − 14

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂V
+ (z0) =

2

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂V (2z0) =
10

σ4z0

− 2

σ2z3
0

∂∆+(0)

∂µ

M̂ IV (0) =
3

σ4
− 4

3σ2z2
0

∂∆+(0)

∂µ

M̂ IV
− (z0) = − 7

σ4
− 10

3σ2z2
0

∂∆+(0)

∂µ

M̂ IV
+ (z0) = − 1

σ4
− 2

3σ2z2
0

∂∆+(0)

∂µ

M̂ IV (2z0) =
5

σ4
− 8

3σ2z2
0

∂∆+(0)

∂µ

M̂ III(0) =
z0

3σ4

M̂ III
− (z0) = − z0

σ4
− 7

3σ2z0

∂∆+(0)

∂µ

M̂ III
+ (z0) = − z0

3σ4
+

1

3σ2z0

∂∆+(0)

∂µ

M̂ III(2z0) =
z0

σ4
− 4

3σ2z0

∂∆+(0)

∂µ

M̂ II(0) = − z2
0

3σ4

M̂ II
− (z0) =

z2
0

6σ4
− 1

σ2

∂∆+(0)

∂µ

M̂ II
+ (z0) =

z2
0

6σ4
+

1

3σ2

∂∆+(0)

∂µ

M̂ II(2z0) = 0

M̂ I(0) = 0

M̂ I(2z0) = 0

Inequalities in (1a - 5a) and (1b - 5b) follow either trivially, or due to Proposition 1

or due to Lemma 1.
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B.9 Proof of Proposition 6

Let µ > 0 and small. First, consider impact effect Θ(δ, µ). Its first order approximation

with respect to drift is given by:

Θ(δ, µ) = Θ(δ, 0) +
∂Θ(δ, 0)

∂µ
µ

Since for δ ≥ 2z0, Θ(δ, 0) = δ and ∂Θ(δ,0)
∂µ

> 0 by Proposition 2, it follows that:

Θ(δ, µ)− δ > 0 for δ ≥ 2z0

Since both Θ(δ, 0) and ∂Θ(δ,0)
∂µ

are second order in δ for small shocks, it follows that:

Θ(δ, µ)− δ < 0 for some small δ > 0

Thus, due to continuity of Θ(δ, µ), there exists δΘ(µ) ∈ (0, 2z0) such that Θ(δΘ(µ), µ)−δ = 0

and Θ(δ, µ)− δ > 0 for all δ > δΘ(µ). Finally, since width of inaction region z(µ)− z(µ)

does not change with µ to first order (Proposition 1), and δΘ(µ) < 2z0, it follows that

δΘ(µ) < z(µ)− z(µ) if µ is sufficiently small.

Now, consider cumulative response M(δ, µ). Its first order approximation with respect

to drift is given by:

M(δ, µ) = M(δ, 0) +
∂M(δ, 0)

∂µ
µ

Since for δ ≥ 2z0, M(δ, 0) = 0 and ∂M(δ,0)
∂µ

< 0 by Proposition 5, it follows that:

M(δ, µ) < 0 for δ ≥ 2z0

Since M(δ, 0) is first order and ∂M(δ,0)
∂µ

is second order in δ for small shocks, it follows that:

M(δ, µ) > 0 for some small δ > 0

Thus, due to continuity of M(δ, µ), there exists δM (µ) ∈ (0, 2z0) such that M(δM (µ), µ) = 0

and M(δ, µ) < 0 for all δ > δM (µ). Similar logic as before leads to δM (µ) < z(µ)− z(µ) if

µ is sufficiently small.

B.10 Proofs of several results regarding Θ(δ, µ) and M(δ, µ)

• Result 1

lim
δ→0

∂AΘ(δ, 0)

∂µ
=

2z0

σ2
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Recall that for a small shock (δ < z0):

Θ(δ, 0) =
1

6z2
0

δ2(δ + 3z0)

∂Θ(δ, 0)

∂µ
=
δ2(6z2

0 − δ2 − 2δz0)

12σ2z2
0

− δ3

6z3
0

∂∆+(0)

∂µ

So that:

∂AΘ(δ, 0)

∂µ
=

2

Θ(δ, 0)

∂Θ(δ, 0)

∂µ
= 2

[
(6z2

0 − δ2 − 2δz0)

2σ2(δ + 3z0)
− δ

z0(δ + 3z0)

∂∆+(0)

∂µ

]
Taking the limit as δ → 0 provides the result.

• Result 2

Θ(δ, µ) ≈

 (1 + z0

σ2µ)Θ(δ, 0) for δ > 0

(1− z0

σ2µ)Θ(δ, 0) for δ < 0

First order approximation of Θ(δ, µ) with respect to drift µ is given by:

Θ(δ, µ) ≈ Θ(δ, 0) +
∂Θ(δ, 0)

∂µ
µ

Now approximate each term to second order with respect to positive shock δ > 0:

Θ(δ, 0) ≈ δ2

2z0

∂Θ(δ, 0)

∂µ
≈ δ2

2σ2

Then:

Θ(δ, µ) ≈ δ2

2z0

+
δ2

2σ2
µ =

(
1 +

z0

σ2
µ

)
δ2

2z0

≈
(

1 +
z0

σ2
µ

)
Θ(δ, 0)

The result for δ < 0 can be shown analogously, with the only difference that second

order approximation of Θ(δ, 0) is given by: Θ(δ, 0) ≈ − δ2

2z0
.

• Result 3

lim
δ→0

∂AΘ(δ, 0)

∂µ
>
∂AI(0)

∂µ

Using expressions for asymmetries, above relation is equivalent to:

2z0

σ2
>

2

z0

∂∆+(0)

∂µ
⇐⇒ z2

0

σ2
>
∂∆+(0)

∂µ

which follows from Lemma 1.
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• Result 4

M(δ, µ) ≈

 (1− |δ|
σ2µ)M(δ, 0) for δ > 0

(1 + |δ|
σ2µ)M(δ, 0) for δ < 0

First order approximation of M(δ, µ) with respect to drift µ is given by:

M(δ, µ) ≈M(δ, 0) +
∂M(δ, 0)

∂µ
µ

Now approximate each term to second order with respect to shock δ:

M(δ, 0) ≈ z2
0δ

6σ2

∂M(δ, 0)

∂µ
≈ −z

2
0δ

2

6σ4

Then for δ > 0:

M(δ, µ) ≈ z2
0δ

6σ2
− z2

0δ
2

6σ4
µ =

(
1− |δ|

σ2
µ

)
z2

0δ

6σ2
≈
(

1− |δ|
σ2
µ

)
M(δ, 0)

The result for δ < 0 is analogous and immediate.
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C Empirics

C.1 Sectoral Data Construction and Description

I use monthly sectoral data on industrial production index (IP) provided by the Board of

Governors of the Federal Reserve System (Industrial Production and Capacity Utilization

- G.17). The original data set spans between January 1972 and October 2019 and contains

224 sectors at different levels of aggregation, corresponding to 3-, 4-, 5-, and 6-digit NAICS

sectors, and some series contain several NAICS categories. The data on Producer Price

Index (PPI) is taken from the Bureau of Labor Statistics, where each series corresponds

to a certain NAICS sector, but time spans vary greatly across sectors.

I pair the two data sets in the following way. First, I only keep IP series at the most

disaggregated NAICS level (by e.g. omitting 3-digit sectors if a 5-digit sector within that

3-digit sector is present in the data). I also remove series containing several sectors if data

in each of these sectors is available individually. This reduces the IP data set to 119 series.

Second, for each series in the IP data I produce a corresponding PPI series. If an IP series

contains only one NAICS sector, the pairing is straightforward. If an IP series contains

several NAICS sectors, I compute a simple average of PPI in these sectors.

An issue with the resulting data set is the sparsity of PPI data. Figure 11 plots the

number of series with non-missing values for PPI over time: Since I am interested in

Figure 11: Availability of PPI data
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Number of series with non-missing values for PPI over time.

estimating impulse responses to identified monetary shocks, it is crucial to have a balanced

panel to ensure that responses of each series are estimated on the same sample of shocks.

Two dates stand out as potential candidates for truncation: January 1986 and January

2004. The latter provides a panel that is approximately twice as large and twice as short

as the former one. I restrict the sample to series starting in January 1986, as estimating

impulse responses on very short series may be problematic. I also omit one series that has
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a prolonged period of missing values. The resulting sample contains 52 series, covering the

manufacturing sector (NAICS sectors in 31 - 33), logging (NAICS 1133), mining, quarrying,

and oil and gas extraction (NAICS sectors in 21), and newspaper, periodical, book, and

directory publishers (NAICS sectors in 5111). I set the end date to December 2017, as

several series have missing values in 2018 and later. Note that this provides the starting

sectoral dataset, which is then further truncated depending on availability of aggregate

variables and identified monetary shocks (e.g. in the baseline estimation I consider the

period between February 1990 and January 2013).

For each series I compute trend inflation as the average annual PPI growth rate over

the entire period. Figure 12 shows the cross-sectional distribution of the estimates. The

Figure 12: Distribution of Trend Inflation
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The blue dashed line shows the median.

blue dashed line depicts the median, which is used to separate series into ‘high’ and ‘low’

trend inflation groups. Figure 13 shows the cross-sectional distribution of average annual

IP growth rates. The two sectors with the highest production growth are communications

Figure 13: Distribution of IP Growth Rates
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equipment manufacturing (3342) and semiconductor and other electronic component

manufacturing (3344). These are also the two sectors with negative trend inflation in
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Figure 12, and are excluded in the baseline estimation by trimming the top and bottom

2.5% of the distribution of trend inflation. The two sectors with the highest trend inflation

are drilling oil and gas wells (213111) and petroleum refineries (32411). The two sectors

with the largest negative IP growth are leather and hide tanning and finishing (316) and

newspaper publishers (51111).

C.2 Billion Prices Project Data

Table 3: Summary Statistics, Billion Prices Project Data

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Asymmetry log ∆+pi
∆−pi

1,924 −0.019 0.258 −0.852 −0.184 0.136 1.164

Drift µ 1,924 0.002 0.008 −0.022 −0.002 0.007 0.027
Drift µ (alt.) 1,924 0.003 0.008 −0.022 −0.003 0.008 0.028
σ2 1,924 0.027 0.017 0.001 0.015 0.035 0.106
Frequency 1,924 0.597 0.193 0.369 0.461 0.681 1.402
Std. Dev. 1,924 0.211 0.055 0.043 0.176 0.248 0.375

Each statistic is calculated at the item level. Asymmetry is measured as the log-ratio

between magnitudes of positive and negative price adjustments. Std. Dev. stands for the

standard deviation of price adjustments. Both measures of drift, idiosyncratic volatility

σ2, and the frequency of price adjustments are computed at a monthly rate.

Figure 14 shows the distribution of price adjustments in the sample. The distribution

speaks in favor of fixed costs of price adjustment, since small price adjustments are less

frequent than adjustments of moderate size. Typically, such pattern can not be observed

in lower frequency data, such as biweekly or monthly, which highlights the importance of

using daily data when working with price adjustments.

Figure 14: Distribution of Price Adjustments

0

500

1000

1500

2000

−50 −25 0 25 50
Price Adjustments, %

82



C.3 Monetary Policy Shocks

Figure 15: Monetary Policy Shocks
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C.4 Robustness Checks

C.4.1 Alternative Shock Measures

To ease comparison, I only plot asymmetries (1st row: industrial production, 2nd row: PPI)

and non-linear IP responses at a 12-months horizon (3rd row) for each alternative shock

measure by column: (1) Jarociński and Karadi (2020) ’poor man’s sign restrictions’, (2)

Gertler and Karadi (2015), (3) Barakchian and Crowe (2013), (4) Nakamura and Steinsson

(2018). Whenever possible, I use the preferred measure of asymmetry (ratio), otherwise I

compute asymmetry as a difference. The main results of the paper remain generally valid.

Asymmetry in the IP responses relates negatively to trend inflation, although results are

weaker when measuring asymmetry as a difference. Asymmetry in the PPI responses

relates positively to trend inflation. Large positive shocks tend to cause contractions in IP

when trend inflation is high, but not so much when trend inflation is low.

Figure 16: Main Results under Alternative Shock Series
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C.4.2 Measurement Error

Figure 17: Asymmetry for a Top-30% / Bottom-30% Split
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Figure 18: Non-Linearity of Industrial Production Responses for a Top-30% / Bottom-30%
Split
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C.4.3 Excluding Great Recession and ZLB period

Figure 19: Asymmetry, Sample Until June 2008
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Figure 20: Non-Linearity of Industrial Production Responses, Sample Until June 2008
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C.4.4 Alternative Trimming

Figure 21: Asymmetry, Trimming Top and Bottom 15%
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Figure 22: Non-Linearity of Industrial Production Responses, Trimming Top and Bottom
15%
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Figure 23: Asymmetry, No Trimming
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Figure 24: Non-Linearity of Industrial Production Responses, No Trimming
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C.4.5 Varying Polynomial Degree

Figure 25: Non-Linearity of Industrial Production Impulse Responses
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C.4.6 Other

To ease comparison, I only plot asymmetries (1st row: industrial production, 2nd row:

PPI) and non-linear IP responses at a 12-months horizon (3rd row) for each alternative

specification by column: (1) number of lags is set to 3, (2) number of lags is set to 12, (3)

set of controls consists of a time trend and lags of the dependent variable, monetary shock

and effective federal funds rate, (4) unsmoothed impulse responses. Whenever possible,

I use the preferred measure of asymmetry (ratio), otherwise I compute asymmetry as

difference. The main results of the paper are unchanged.

Figure 26: Other Robustness Checks
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D General Equilibrium

D.1 Equilibrium along the transition path

Deterministic dynamics after transitory shocks, considered in this paper, introduce three

changes relative to the stationary equilibrium. Firstly, the changing markup makes firms

profits time dependent. Secondly, the drift in firms optimal price is also affected by

the moving markups and the nominal wage. Finally, aggregate consumption can not be

omitted from the firms problem, as it is no longer constant.

Denote the time-dependent drift in firms optimal price by µt =
(
d logMt + d log

(
θt
θt−1

))
/dt.

The value function of a firm becomes time-dependent:

(ρ+ λ)v(z, t) = π(z, t) + λv(ẑ, t)− µtvz(z, t) +
1

2
σ2vzz(z, t) + vt(z, t)

as well as the distribution of price gaps:

ft(z, t) = µtfz(z, t) +
1

2
σ2fzz(z, t)− λf(z, t)

Time-dependent profit and cost functions are:

π(z, t) =

(
αθtCt
θt − 1

)1−θt
e−θtz

(
ez − θt − 1

θt

)
c(z, t) = κ

(
αθtCt
θt − 1

)1−θt
e(1−θt)z

All other equilibrium objects can be computed as before, substituting constant

variables with time-dependent ones. When solving for the transition dynamics, I follow

the numerical approach of Achdou et al. (2017).
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D.2 Dynamics after Policy Interventions

Figure 27: Markup Shock and Policy Response
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Impulse responses of consumption, price level and markup to a 3% markup shock and policy intervention.
Solid blue lines correspond to a zero monetary response, dashed red lines – to a 2% contraction, dotted
yellow lines – to a 2% expansion. Consumption and markup responses are in terms of percent deviations
from the steady state, price level responses are in terms of percent deviations from the trend.
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D.3 Alternative Calibration

I now target the same values of price adjustment frequency and average size of adjustment,

but consider a lower target for kurtosis, setting it to 3. The calibrated values in annual

terms for σ, κ and λ are now 0.142, 0.048 and 1.03. The next two figures show policymaker’s

frontiers after 3% and 10% markup shocks, same as those considered under the baseline

calibration.

Figure 28: Frontiers, Small Shock
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Figure 29: Frontiers, Large Shock
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Increasing inflation target from 2% to 4% amplifies the response to the markup shock

by 1.2% when the shocks is small (2%) and by 4.1% when the shocks is large (10%). At

the same time, the curvature of the frontier increases by 7.4% for the small shock and by

10.2% for the large shock. Thus, the effect of trend inflation remains quantitatively sizable

under an alternative calibration.
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D.4 Using Inflation CIR

Here I consider an alternative frontier of the monetary authority, defined in terms of

the usual consumption CIR and a cumulative response of absolute values of inflation:∫∞
0
|πt − µ|dt. The next two figures show policymaker’s frontiers after 3% and 10% initial

markup disturbances, same as those considered under the baseline specification.

Figure 30: Frontiers, Small Shock
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Figure 31: Frontiers, Large Shock
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In both cases a higher trend inflation leads to a larger initial response to the markup

shock in terms of both consumption and inflation deviations. In addition, monetary

authority becomes more constrained in stabilizing inflation, as some levels of inflation CIR

become infeasible (the red dashed lines lie above the blue ones).

94



E A Simple Model of Capital Adjustment

In this section I show how one can arrive to the analytic framework of this paper, starting

from a simple model of capital accumulation. Consider a firm that produces a single good

y using capital k and a DRS production function y = kα, where α ∈ (0, 1). The price of

the output good is normalized to one. Profits are discounted at rate ρ > 0. Absent of

action, capital depreciates at rate η and is subject to a Brownian motion shock:

d ln k(t) = −ηdt+ σdW (t)

It is common in the literature to introduce the shock in the capital low of motion, instead of

the production function (see e.g. Brunnermeier and Sannikov (2014), Fernández-Villaverde,

Hurtado, and Nuño (2019)). The firm may buy or sell capital (at the same price of one),

so that the desired level of capital is determined by solving:

max
i

(k + i)α − i =⇒ α(k + i︸ ︷︷ ︸
k∗

)α−1 = 1

The desired level of capital is equal to α
1

1−α . Denote by z(t) = ln k(t)− ln k∗ the capital

gap (percent deviation of current capital from the desired level). Then the firm’s loss due

to a non-zero capital gap can be approximated to second order as follows:

L(z) = k∗(1− α)z2

Suppose that capital adjustment comes at a fixed cost κ. In the absence of action, z(t)

evolves as follows: dz(t) = −ηdt + σdW (t), and the problem becomes identical to the

one considered in the analytic framework of this paper. The value function satisfies the

following HJB:

ρv(z) = −z2 − ηv′(z) +
1

2
σ2v′′(z)

where I normalized k∗(1− α) to one, as only the ratio k∗(1−α)
κ

is important for the firm.

In this model, the drift is due to depreciation, z(η) and z(η) are the boundaries of

inaction region, and ẑ(η) is the reset capital gap. If there is no depreciation (η = 0), then

the inaction region is symmetric, the reset capital gap is equal to zero, and capital sales are

of the same size as capital purchases. The analytic results of this paper imply that a small

positive rate of depreciation (η > 0) increases the size of capital purchases and decreases

the size of capital sales. Firms anticipate erosion of their capital due to depreciation and

frontload upon adjustment to account for it.

One can also study the effect of an unanticipated aggregate shock to capital. Suppose

that capital of every firm is simultaneously reduced by δ > 0. Then the response of
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aggregate capital on impact can be calculated as follows:

Θ(δ, η) = −δ︸︷︷︸
Initial decline

+

∫ z(η)

z(η)−δ
(ẑ(η)− z)f(z + δ, η)dz︸ ︷︷ ︸
Endogenous Response

where f(z, η) is the steady state distribution of capital gaps. Proposition 2 in this paper

implies that a higher rate of depreciation mitigates the effect of a negative shock. The

reason is that a positive rate of depreciation increases the mass of firms close to the lower

boundary of inaction region and the fact that firms frontload upon adjustment. In addition,

if the negative shock forces all firms to adjust, then:

Θ(−δ, η) = −δ + ẑ(η)− (x̄(η)− δ) = ẑ(η)− x̄(η)︸ ︷︷ ︸
>0 if η>0

so that a sufficiently large negative shock to capital will lead to a positive aggregate capital

response if the depreciation rate is positive.

One can also compute the cumulative impulse response of aggregate capital (or output)

to a δ shock. CIR of aggregate capital is given by:

MK(δ, η) =

∫ z(η)

z(η)

E
(∫ ∞

0

(z(t)− x̄(η))dt | z(0) = z

)
dFδ(z, η)

so that MK(δ, η) = −M(δ, η) where M(δ, η) is the CIR studied in the main part of this

paper. Proposition 5 then implies that cumulative impulse responses of capital to negative

shocks are mitigated, whereas to positive shocks are amplified, as the rate of depreciation

increases. Since ln y(t) = α ln k(t), a similar conclusion applies to output responses.
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