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ABSTRACT

Why are females, compared with males, both more likely to have strong STEM-related

performance and less likely to enter a STEM field later on? We exploit random classroom

assignment to identify the impact of comparative STEM advantage on specialization decisions.

Comparative STEM advantage is proxied by the within-classroom ranking of the ratio of

STEM over non-STEM performance. We find that females with a higher comparative STEM

advantage are more likely to choose a STEM school track and apply for a STEM degree.

Comparative STEM advantage explains 12% of the underrepresentation of qualified females

in the earliest instance of STEM specialization.
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1 Introduction

It is well established that males are more likely than females to take mathematically oriented

courses in school and obtain bachelor’s degrees in computer sciences, engineering, physical sciences,

and mathematics disciplines (National Science Foundation, 2016, 2017). Is this because females

perform poorly in mathematics and physics in school? The answer is no. Although gender gaps in

STEM university enrollment persist, the underperformance of women on mathematics and physics

tests has narrowed or even reversed in many countries. According to a recent OECD report on

PISA scores, in Iceland, Sweden, Norway, Finland, Israel, Indonesia, and Greece the gender gap

in mathematics and science has reversed in favor of females (OECD, 2016).1 Thus, females’ low

performance in STEM does not fully explain the underrepresentation of women in STEM disciplines

(Ceci et al., 2014).

There is still debate regarding what shapes gender differences in field and occupation special-

ization. Previous studies highlight the roles of biological, social, psychological, and environmen-

tal factors that might influence this gap (Benbow, 1988; Waber, 1976; Steele, 1997; Lavy and

Megalokonomou, 2019). In addition to those factors, students may also be likely to base course

enrollment and degree specialization decisions on their beliefs about their relative academic abil-

ities (Eccles, 1983; Wang and Degol, 2013; Stoet and Geary, 2018; Breda and Napp, 2019). In

this paper, we investigate how the relative comparison of a student’s own academic strengths and

weaknesses with respect to her classmates affects her decision to select and specialize in a STEM

field.

To examine this, we introduce the concepts of absolute and comparative advantage among

one’s classroom peers and consider their role in field specialization decisions. We take two groups

of subjects that lead to different university degree programs and occupations: STEM and non-

STEM.2 Students allocate their time between studying for those two types of subjects, which

require different skills. Non-STEM subjects mainly rely on reading, writing, and comprehension

skills, while STEM subjects mainly rely on analytical skills. Students might make different time

investment and specialization decisions depending on their relative performance in one group of

subjects compared with another.

1For more information, see https://data.oecd.org/pisa/mathematics-performance-pisa.htm.
2This distinction is of high interest, since there is underrepresentation of females in STEM-related majors,

faculties, and occupations. This has important consequences for women, as well as for the entire society. Indeed,
STEM occupations generally pay a higher salary; therefore, the lack of women working on these occupations
contributes to the widening of the gender wage gap (Beede et al., 2011; Sloane et al., 2019; Duflo, 2012; Black
et al., 2008; Blau and Kahn, 2017). Moreover, improved gender diversity in the workplace has been identified as
an important driver for the development of new technology and innovations (Hong and Page, 2001; Clayton and
Collins, 2014).
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We first investigate whether there exists a gender performance gap in these two types of com-

pulsory subjects, STEM and non-STEM, then construct a measure of absolute STEM advantage.

We define absolute STEM advantage as the ratio between a student’s average performance in

STEM and non-STEM subjects. This measure conceptualizes a student’s assessment of her own

academic strengths in one group (i.e., STEM) relative to the other group of subjects (i.e., non-

STEM). Then, we construct a measure of comparative STEM advantage, which reflects how a

student’s absolute STEM advantage compares with that of her randomly assigned classmates. We

approximate comparative STEM advantage using the within-classroom rank of students’ absolute

STEM advantage in 10th grade. We develop a simple theoretical model to provide insights on why

absolute and comparative STEM advantage may affect students’ specialization decision.

In our context, students choose a specialization track at the end of the 10th grade. This is

the first opportunity students have to specialize in a field during their school career. We observe

students’ STEM specialization decision in this instance. We also consider students end-of-high

school STEM specialization outcomes by looking at their university degree applications. In this

paper, we ask the following question: What is the causal effect of comparative STEM advantage,

measured early in high school, on the longer-term likelihood of STEM specialization for males and

females? To answer this question, we use new data for more than 70,000 students from a sample

of 123 public high schools in Greece. We exploit an institutional setting in which students at

the beginning of high school (10th grade) are quasi-randomly (alphabetically based on surname)

assigned to classrooms. Students stay with the same classmates for all courses for the whole school

year. We rely on the assumption that people naturally make comparisons with others within their

peer group (Festinger, 1954) using ordinal rank (Tincani, 2017; Bursztyn and Jensen, 2015). We

believe that students have a decent understanding of their relative standing within their classroom,

based on repeated interactions with classmates and teachers.

To illustrate our identification strategy, consider two students with the same average perfor-

mance in STEM and non-STEM, and thus the same absolute STEM advantage. The first student

is assigned to a classroom in which all peers have a lower absolute STEM advantage compared

with her. Therefore, this student ranks at the top of her classroom in terms of her absolute STEM

advantage. The second student is assigned to a classroom (same average classroom characteristics

and inputs as the other classroom) in which two peers have a higher absolute STEM advantage

compared with her. Therefore, she ranks third in terms of absolute STEM advantage within her

classroom. Our basic idea is to compare the specialization outcomes of pupils who have the same

characteristics and the same raw performance, who are—by chance—in groups in which they have
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a different relative standing in absolute STEM advantage, due to practically random peer group

formation. It is important to stress that our identification strategy exploits variation in the dis-

persion of absolute STEM advantage within classrooms of the same average characteristics and

inputs. This idiosyncratic variation arises because of small class size.

Our findings can be summarized as follows. First, we confirm evidence in the literature on two

points: (1) females outperform males in both STEM and non-STEM subjects3 and (2) females

score much higher than males in non-STEM subjects than they do in STEM subjects. We also

find that females have a lower comparative STEM advantage among quasi-random classmates than

males. Second, we exploit random variation in a student’s relative standing within her classroom

to study the impact of comparative STEM advantage on future specialization decisions. We find

that an increase in comparative STEM advantage by two positions within the classroom,4 leads

to an increase in the likelihood of enrolling in a STEM track by 1.9 percentage points for females.

The effect is much smaller or not statistically different from zero for males. Our findings suggest

that between 4 and 6 percentage points of the 34-percentage-point gender gap (or 12-18%) in

initial STEM specialization in high school is attributable to the influence of comparative STEM

advantage.

Our findings show that comparative STEM advantage has longer term implications. In partic-

ular, we show that one’s comparative STEM advantage in grade 10 has implications on students’

preferences 2 years later, when they apply to university degree programs. Specifically, we find

that assignment to a classroom that increases a student’s comparative STEM advantage by 10%

increases her likelihood of applying for a STEM degree at the university by around 1% for females,

while males are not affected. We also find a significant effect of comparative STEM advantage on

STEM performance in grades 11 and 12. We find similar results when the comparative STEM

advantage is computed with respect to same-gender classmates, and weaker effects when it is com-

puted with respect to school-cohort peers. Our results highlight the role of comparative STEM

advantage in the underrepresentation of females in STEM disciplines.

We conduct a series of robustness exercises to further support our identification strategy. First,

we show that results remain similar when we use different functional forms of absolute STEM

advantage. Our preferred specification includes a flexible nonlinear functional form for absolute

STEM advantage, but the results are similar when a linear, quadratic, cubic, quartic, or quintic

functional form is used. Second, we show that students at different parts of the comparative STEM

advantage distribution do not have different attrition behavior. Our results remain similar when

3This finding has been established through meta-analysis (O’Dea et al., 2018).
4This is equivalent to a 10% increase in comparative STEM advantage.
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we account for attrition weights in the main specification (inverse attrition weights). Third, we

use student performance measured at different times and find that our results remain qualitatively

unaffected. Fourth, we show that our results are robust when we use a different STEM definitions

for subjects and degree programs.

Our study moves beyond previous studies in several important ways. First, we contribute

to the literature of field specialization decisions in education. To our knowledge, we are the

first to incorporate the concepts of absolute and comparative advantage in the classroom and

causally address the latter. In other words, we put together two dimensions of comparison: the

within-individual comparison of different sets of skills and the social comparison of those with

others. These factors help us explain what drives students into different specializations. The

within individual comparison of one’s relative strengths and weaknesses refers to absolute STEM

advantage.5 The second dimension of comparison refers to one’s strengths in different fields relative

to the strengths of others around them. According to Tversky and Kahneman (1974) individuals

adopt cognitive short-cuts, such as the use of ordinal information, when they compare themselves

with others. Therefore, we proxy one’s comparative advantage in one group of subjects compared

with the other by using the rank in STEM relative to non-STEM performance within the classroom.

The research designs used in recent studies do not incorporate within-individual skill comparison

(Elsner and Isphording, 2017; Murphy and Weinhardt, 2018; Elsner et al., 2018; Delaney and

Devereux, 2019).

Second, we contribute to the identification of rank. While previous studies exploit non-random

variation in cohort composition within schools (Elsner and Isphording, 2017; Murphy and Wein-

hardt, 2018; Delaney and Devereux, 2019), we exploit within-school-cohort idiosyncratic variation

in classrooms’ ability composition. While the former cannot exclude the possibility of confounding

school-cohort shocks, we are able to control for this unobserved endogeneity in our identification.

In other words, we exploit the random variation of students’ abilities in classrooms within the same

cohort and school, to account for cohort selection bias. The ideal research design for disentangling

the effects of within-individual and across-individual comparisons would require that identical stu-

dents be randomly assigned to peer groups. Those peer groups would need to have the same group

characteristics, but different ability distributions, which would result in students placing them-

selves in different ranked positions in their peer group distribution. The alphabetical assignment

5Some biological explanations have been proposed regarding the higher performance of males in STEM compared
with non-STEM subjects in some countries, and their higher propensity to enroll in STEM related disciplines. The
main research in this area includes analysis of diversity in brain composition (Gur et al., 1999; De Bellis et al.,
2001; Cahill, 2005; Gallagher and Kaufman, 2005), males’ greater spatial orientation due to evolutionary foundation
(Gaulin et al., 1988); or the influence of more complex environments (Berenbaum et al., 2008).
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of students to peer groups we exploit in this paper resembles the ideal quasi-experiment.

Our study’s third contribution relates to the broad external validity of our findings. This is the

first study to examine explores social comparisons using the full support of the ability distribution.

Unlike Elsner et al. (2018), who explore social comparisons at a Dutch business school, our results

draw on a broader range of the ability distribution. We consider students before they specialize in a

given field for the first time in their school careers. Understanding the impact of social comparisons

at first instance of student specialization may be of particular policy relevance.

We also contribute to the literature on the longer-term effects of rank in education, by looking at

longer-term STEM study decisions. In particular, we provide evidence that students’ comparative

advantage in STEM in grade 10 affects not only their STEM specialization decision in grade 11,

but also their decision to apply to a 4- or 5-year STEM university degree program. Our study

helps explain why females choose to specialize in non-STEM disciplines, which are associated with

lower wages, even though they outperform males in both STEM and non-STEM subjects.

Finally, we contribute to the literature of gender differences in responsiveness to grade informa-

tion. Owen (2010) finds that females are more likely to use grades as feedback about their ability

to a higher extent than males. Females may perceive lower grades as confirmation of stereotypes

by which females are not as good as males in STEM subjects.6 Our findings highlight not only that

females may be more sensitive to grades than males, but also that females may be more attentive

to their ordinal comparison within their group of reference than males.

2 A Simple Model of STEM Specialization

In this section, we develop a simple theoretical framework to motivate why comparative STEM

advantage may affect STEM specialization. This theoretical framework explores the channels

through which the comparison of academic strengths in different fields both within the same

individual and between individuals may influence a student’s STEM specialization decision. The

goal of this framework is not to motivate an empirical strategy but to highlight the key conditions

under which comparative STEM advantage may have a distinct influence on STEM study.

The idea that individuals with heterogeneous skill levels may compare their own skills with those

of other individuals is not new in the literature. In the seminal Roy-Borjas model of self-selection

6A study in psychology corroborates the idea that female students are more likely than male students to attribute
negative feedback to their own low ability (Dweck et al., 1978). Also, Rask and Tiefenthaler (2008) show that women
have greater grade reliance, especially with respect to STEM-related subjects, and negative feedback may serve to
bolster and confirm their negative stereotypes. Steele (1997) examines how women in quantitative fields encounter
stereotype threats that challenge their ability to identify themselves within those fields.
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(Roy, 1951; Borjas, 1987), specialization decisions are shown to rely heavily on the distribution

of skills and abilities within and across individuals. Eccles’s (1983) expectancy value theory,

supported by empirical evidence from the US (Wang et al., 2013; Gardner, 2016), suggests that

students use their own relative performance to evaluate their academic strengths and subsequently

make STEM-related enrollment decisions. At the same time, Zafar (2011) and Bobba and Frisancho

(2016) identify social comparison as a crucial driver for enrollment decisions in different fields

of study. Exploring the theoretical underpinnings of the STEM specialization decision allows

us to deduce the conditions under which the social comparison of different skills might lead to

underrepresentation of qualified individuals in occupations associated with those skills.

Suppose there are many individuals i ∈ I who interact in a peer environment. Each individual

chooses a specialization that maximizes her utility. Each specialization leads to an occupation that

employs the skills intensively related to this specialization. There are only two specializations:

STEM (which would lead to occupations such as engineer) and non-STEM (which would lead to

occupations such as lawyer). The utility function of individual i specializing in k (STEM or non-

STEM) is an increasing function of monetary returns, wk
i , and nonmonetary returns, pki , which

may allow for substitution. For exposition, we assume the following multiplicative utility function

without loss of generality:

Uk
i = f(pki , w

k
i ) = pki · wk

i where k = {S,NS}

so that
∂Uk

i

∂pki
> 0,

∂Uk
i

∂wk
i
> 0. Suppose the nonmonetary return, associated with idiosyncratic

preference for specialization k, takes a scalar form. The nonmonetary return, pki , represents indi-

vidual i ’s preference for specialization k, which could reflect, inter alia, nonpecuniary aspects of

the occupation associated with specialization k. Suppose also that the monetary return to special-

ization k, associated with earnings from labor in a k -related occupation, is an increasing function

of individual i ’s own competence in k, αk
i , and a decreasing function of the competence of every

other individual in k, αk
−i, where -i ∈ I -{i},7 as follows:

wk
i = f(αk

i , α
k
−i) where αk

i , α
k
−i > 0

so that
∂wk

i

∂αk
i
> 0,

∂wk
i

∂αk
−i

< 0 and
∂2wk

i

∂αk
i δα

k
−i

< 0. The key assumption of our theoretical framework is

that an individual’s expected earnings in a k -related occupation is proportional to her competence

7We think of -i as a series of all contenders of i. Thus, αk
−i may be thought of as a vector with every contender’s

competence in k.
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in k relative to the competence of others in the same discipline.8 For simplicity, assume that

each individual is small enough compared with the labor market, so that their decision to follow

a k specialization and consequently a k -related occupation, will not influence market competence

αk
−i or market wage wk. For exposition, suppose a multiplicative monetary return function of the

following form:

wk
i = λk

(
αk
i

αk
−i

)

where λk denotes the marginal expected return to relative competence in discipline k. Individual

i would specialize in STEM if and only if:

US
i > UNS

i

⇔ pSi · λS

(
αS
i

αS
−i

)
> pNS

i · λNS

(
αNS
i

αNS
−i

)

⇔
αS
i

αNS
i

αS
−i

αNS
−i

>
pNS
i · λNS

pSi · λS
(1)

where
αS
i

αNS
i

represents student i ’s own absolute advantage in STEM and
αS
−i

αNS
−i

represents the

absolute STEM advantage of others student i competes with. The LHS of decision rule (1) is

a cardinal measure of comparative STEM advantage. In the case of a school or classroom envi-

ronment, student i is likely to compete with her school or classroom peers, respectively. Thus, a

student is likely to compare her absolute STEM advantage to the absolute STEM advantage of

each of her school or classroom peers. If we assume for simplicity that pNS · λNS = pS · λS, then

decision rule (1) becomes
αS
i

αNS
i

>
αS
−i

αNS
−i

, suggesting that an individual chooses to specialize in STEM

only when her strength in STEM relative to non-STEM exceeds her peer’s strengths in STEM

relative to non-STEM.

Naturally, students may not know the α’s of every other person in the general student popu-

lation, and thus may not know how their own academic strengths compare with those of everyone

else. Students may instead use a proxy to estimate how their strengths compare with the strengths

of their classroom peers because they interact with them for a considerable part of the day.

The intuition drawn from our theoretical discussion can motivate the following hypothesis

related to STEM specialization and be tested empirically: The higher an individual’s relative

8This assumption is not too heroic. Consider the sorting algorithm based on which students gain admission to
tertiary education. Consider also that more competitive STEM (non-STEM) degrees may be associated with higher
expected earnings than less competitive STEM (non-STEM) degree programs.
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standing among her contenders in terms of comparative STEM advantage, the more likely she is

to specialize in STEM, ceteris paribus. We investigate this hypothesis in Section 4.

3 Data and Institutional Framework

In this section, we describe the data and institutional setting of school and classroom assignment.

We also describe the processes of track specialization in high school and college application in

Greece. We conducted a secondary data collection by visiting and retrieving administrative data

from a sample of 123 public schools9 and more than 70,000 students. Our school sample corresponds

to roughly 10% of public schools in Greece.

Each student record contains an individual identifier, a school and classroom identifier, and

detailed demographic information on the student: year of birth, gender, a complete track enroll-

ment history, high-school graduation status, high-school graduation year, and test scores for each

student in each subject and grade. We have information for all high school grades, namely 10th,

11th, and 12th grades. The panel data span from 2001 to 2009. We also obtained access to admin-

istrative records collected by the Hellenic Ministry of Education. For each university applicant, we

have information on the degrees they applied for. We link each student’s file with administrative

records that include postsecondary application information.

The educational system in Greece is highly centralized (OECD, 2018). Students are assigned

to public schools through zoning based on their residential address and geographic proximity to

a school.10 Once students enroll in a given high school, they are assigned to a physical classroom

where they take all courses. The assignment of students and teachers to classrooms within each

school is random.11 In particular, in accordance with a law that is strictly enforced, students are

allocated to classrooms in an alphabetical order based on their surname. Students are not allowed

to switch classrooms. This alphabetical classroom assignment allows for a randomization of peer

characteristics in the classroom, which we show later.

We identify three subjects as STEM-related: Algebra, Physics and Chemistry; and three sub-

jects as non-STEM-related: Modern Greek, Greek Literature, and Ancient Greek. These six

subjects are compulsory and taken by all students from grade 10 to grade 12. We approximate the

concept of individual competence in STEM relative to non-STEM, presented in Section 2, using

9Using data from the same environment, we have shown that the sample is nationally representative with regard
to several important variables, such as female share and track choice (Goulas and Megalokonomou, 2015).

10Families are unable to enroll their children in a different public school than the one assigned, since they are
required to provide proof of their residential address and utility bills.

11Evidence of this random assignment in the same context can be found in Lavy and Megalokonomou (2019).
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the ratio between average scores in STEM over non-STEM subjects for each student. Thus, we

define absolute STEM advantage12 as follows:

Student i ’s Absolute STEM Advantage =
Student i’s Av. score in STEM subjects

Student i’s Av. score in non-STEM subjects
(2)

In the first instance, students have to choose a specialization track between the end of the 10th

and the beginning of the 11th grade. The available tracks are Classics, Science, and Information

Technology. Each track requires that students take different sets of courses in order to graduate.

Students may choose to remain in the same track or change tracks between the end of the 11th

and the beginning of the 12th grade.13 Figure 1 shows the timeline of the choices high school

students face. We categorize the Classics track as a non-STEM track, and Science and Information

Technology tracks as STEM tracks. There is no minimum performance threshold for students to

enroll in any track, and all schools offer exactly three tracks. Each track has different compulsory

subjects. At the end of each year, all students take final exams in the courses they took during

the same academic year.14 We use 10th grade performance on final exams to compute our main

variables.15

University admission is centralized and administered by the Ministry of Education. To apply

for a university degree program, students must take standardized national exams at the end of the

12th grade. After taking these exams, applicants submit a list of their preferred tertiary degree

programs16 to the Ministry of Education (OECD, 2018).

We consider two educational outcomes: STEM track choice in grade 11 and application to a

university STEM degree program. We consider all degree programs offered by Science, Engineering,

and Technology departments to be STEM degree programs. Health sciences, such as Medicine and

Biology are not considered STEM, nor are Business and Economics.17 The two outcomes variables

are nested, in the sense that only students who attended a STEM track in the 12th grade can apply

to a STEM degree program.18 Finally, we look at the average performance in STEM subjects in

12We discuss the association between absolute STEM advantage and future study decision in the Appendix.
13Only 0.7% of students in our sample move to a different track after the end of grade 11.
14Students must demonstrate sufficient performance on their final exams to progress to the next grade.
15In Section 5.1.5, we show that our result are robust when we use performance in the first semester instead of

final exam performance in 10th grade.
16By “degree program,” we mean a department at a specific university. Each university department offers exactly

one bachelor’s degree program (ptychion).
17In Table A7 we show that our main results are robust to the inclusion of Health Science, Business, and Economics

in the definition of STEM departments.
18Students in the Classics track may apply to a STEM degree program by incurring a penalty (in the form

of a reduction of their test scores) and only if they take national exams in the STEM courses. This scenario
corresponds to a negligible share of university applicants coming from the Classics track in high school. Our
analysis of applications for a STEM degree programs only considers candidates from a STEM high school track, for
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grades 11 and 12, as an outcome.

3.1 Descriptive Statistics

Panel A of Table 1 shows average performance by gender and subject. Females perform, on average,

significantly better than males in almost every subject. We plot those performance differences by

gender in Figure 2. We show that females outperform males much more in non-STEM than in

STEM subjects.19 Panel B in Table 1 shows that females’ overperformance is even higher in non-

STEM (=1.594) compared with STEM (=0.349). Class-level differences for males and females are

not statistically different from zero, indicating that class randomization has been indeed successful.

Combining these, females have a lower comparative advantage in STEM subjects compared with

males (0.409 for females and 0.487 for males). Panel C shows that despite females’ overperformance

in both STEM and non-STEM subjects, they are 34% less likely to choose a STEM track at the

end of grade 10, and 6.2% less likely to apply to a STEM university department, conditional on

enrolling in a STEM track in 12th grade.20

Figure A3 shows the shares of females and males by quintile of performance in STEM and

non-STEM subjects. The top figure shows that 55% are females across all quintiles of STEM

performance, including the top quintile (5th quintile). The bottom figure shows that in the top

quintile of non-STEM performance, the proportion of females (75%) is much higher than males

(25%). Table A1 shows summary statistics for STEM specialization by gender. Differences in

comparative STEM advantage for individuals who specialize in STEM compared with those who

specialize in non-STEM are larger for males than females.21

4 The Effect of Comparative STEM Advantage

In this section, we empirically examine the relationship between a student’s comparative STEM

advantage and her likelihood of specializing in STEM, ceteris paribus. In other words, we attempt

to tease out the distinct role of comparative STEM advantage in future STEM specialization

outcomes, while controlling for absolute STEM advantage.

whom the cost of applying to a STEM degree program is homogeneous.
19Figure A1 shows the performance distributions for males and females in STEM (top figure) and non-STEM

subjects (bottom figure).
20Figure A2 shows that the distribution of absolute STEM advantage is shifted to the left for females compared

with males.
21We discuss Table A1 in the Appendix.
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Estimating the effect of comparative STEM advantage, in addition to absolute STEM advan-

tage, on future STEM specialization is challenging for several reasons. First, these absolute and

comparative STEM advantages are correlated by construction, which renders the identification

of their distinct effects difficult. This could introduce issues with the reliability and precision of

the estimates. At the same time, both absolute and comparative STEM advantage may be corre-

lated with student unobservable characteristics (e.g., preferences or motivation), which may also

influence student specialization decisions. This could potentially introduce bias due to omitted

unobservable confounders in the effect of interest. We mitigate both of these problems by employ-

ing an ordinal, rather than cardinal, measure of comparative STEM advantage, while controlling

for absolute STEM advantage. Specifically, we approximate comparative STEM advantage using

the within-classroom rank of absolute STEM advantage.22

Using rank of absolute STEM advantage to approximate comparative STEM advantage has

several benefits. First, in the heuristic process of comparison, individuals end up transforming

complex assessments into manageable subjective tasks by employing cognitive short-cuts, such

as “How do I rank relative to my group?” (Tversky and Kahneman, 1974). Therefore, the rank

in absolute STEM advantage represents an easier instrument students use for social comparison.

Second, the economics literature documents the distinct role of rank-ordered positions in several

outcomes (Brown et al., 2008; Card et al., 2012; Murphy and Weinhardt, 2018). Third, using rank

allows us to investigate the causal effect of comparative advantage on later choices and investments.

In our setting, individuals have control over their own absolute STEM advantage, but they cannot

fully influence their relative assessment or rank, since assignment to a peer group is random.

Therefore, we are able to isolate the causal effect of comparative STEM advantage, in addition to

the influence of absolute STEM advantage.

4.1 Defining Comparative STEM Advantage

We define each student’s comparative STEM advantage as her within-classroom percentile rank of

absolute STEM advantage in grade 10, defined in equation (2), as follows:

Comparative STEM advantage =
Ordinal Rank of Absolute STEM Advantage− 1

Classroom Size− 1
(3)

22An alternative approach would be to approximate comparative STEM advantage using the ratio of a student’s
absolute STEM advantage to her classroom’s absolute STEM advantage. While the ratio on the LHS of decision
rule (1) is a cardinal measure of comparative STEM advantage, the rank in STEM advantage is an ordinal measure
of comparative advantage in STEM within the classroom. We explore this approach in Table A3.
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We first compute the ordinal rank of absolute STEM advantage for each student. This number

goes from 1 to N, where N is each classroom’s size. The student with the highest absolute STEM

advantage in the classroom is given an ordinal rank value equal to NN The student with the

lowest absolute STEM advantage in the classroom is assigned a value of 1. In order to obtain

a comparable measure of rank across classrooms, we transform each student’s ordinal rank to a

percentile rank, as in equation (3). We use this percentile rank as a measure of comparative STEM

advantage and thus it is bounded between 0 and 1. The student with the highest absolute STEM

advantage within her classroom has a comparative STEM advantage of 1, while the student with

the lowest absolute STEM advantage has a comparative STEM advantage of 0.23

Figure 3 shows sizeable variation in comparative STEM advantage with respect to different

levels of absolute STEM advantage. A student with an absolute STEM advantage equal to 0.4

is likely to be have one of the lowest comparative STEM advantage values in her classroom. A

student with an absolute STEM advantage of 1.4 is likely to have one of the highest comparative

STEM advantage values in her classroom. A student with an absolute STEM advantage of 0.8

may have almost any comparative STEM advantage value, depending on which classroom she is

assigned to.24 Figure 4 shows the distribution of comparative STEM advantage values for males

and females. Males are more likely than females to have a higher comparative STEM advantage.

4.2 Identifying Variation

We exploit quasi-random variation in classroom composition within schools and cohorts that arises

from the alphabetical assignment of students to classrooms. This random assignment of students

to classrooms within school-cohorts produces exogenous variation in comparative STEM advan-

tage, for a given absolute STEM advantage. In other words, our identification strategy compares

students with the same performance in STEM and non-STEM subjects, and therefore the same

absolute STEM advantage. These students may have different rankings in absolute STEM advan-

tage (namely, comparative STEM advantage), because they are assigned to classrooms with peers

who perform at different levels in STEM and non-STEM subjects. This identification allows us to

23For example, the student with the highest absolute STEM advantage in a classroom of 20 students would have
an ordinal rank of absolute STEM advantage equal to 20 and a comparative STEM advantage equal to 1 ( 20−1

20−1 ).
At the same time, the student with the lowest absolute STEM advantage in a classroom of 20 students, would have
an ordinal rank of absolute STEM advantage equal to 1 and a comparative STEM advantage of 0 ( 1−1

20−1 ).
24The relationship between comparative STEM advantage and STEM performance is increasing, but it shows

large variation. The top panel of Figure A4 shows this variation in comparative STEM advantage, with respect to
average STEM performance. This large variation is even more pronounced in the middle of the STEM performance
distribution. The association between non-STEM performance and comparative STEM advantage is rather weak.
The variation in comparative STEM advantage remains constant for every decile of non-STEM performance.

13



control for average classroom characteristics that could confound our estimates of interest.

Variation in comparative STEM advantage stems from differences in the dispersion of absolute

STEM advantage among random peers in classrooms with the same average characteristics. Class-

rooms may have different dispersion of absolute STEM advantage because of their small size.25

The schematic in Figure 5 provides intuition about the source of the identifying variation in com-

parative STEM advantage. It considers two students with the same absolute STEM advantage X.

The students are randomly assigned to different classrooms in school A. Classrooms 1 and 2 are

identical except for the dispersion of absolute STEM advantage among students. Therefore, the

two students have different values of comparative STEM advantage. Our identification strategy is

similar to that of Elsner and Isphording (2017) and Murphy and Weinhardt (2018), who estimate

the impact of performance rank on future educational attainment. These papers exploit variation

across different school-cohorts, while our approach considers randomly created peer groups (i.e.,

classrooms) within the same school-cohort.

4.3 Empirical Strategy

We estimate the effect of comparative STEM advantage on subsequent STEM study outcomes

using the following regression specification:

Yijst = α + βComparative STEM Advantageijst + f(aijst) +X ′
ijst γ + μjst + εijst (4)

where Yijst is the outcome variable for i student, in j classroom, in s school, and t cohort. This

can be a dummy indicator that equals to one if a student enrolls in a STEM track in grade 11 or

a dummy indicator that equals to one if a student applies to a STEM university degree program

2 years later. We later also use performance in STEM subjects in grades 11 or grade 12, as an

outcome variable. Outcome Y depends on comparative STEM advantage, a flexible function of

absolute STEM advantage, f(aijst), individual characteristics, Xijst, and classroom FE, μjst.
26

Vector X contains student gender, year of birth, and an individual’s performance in STEM

25Larger classrooms would have a dispersion of student ability closer to the population dispersion due to the central
limit theorem, making dispersion across classrooms less likely to differ. Figure A5 shows substantial variation in
the standard deviation of absolute STEM advantage within each classroom.

26An alternative approach would be to add classroom-specific controls (average STEM and non-STEM perfor-
mance, average absolute STEM advantage, class size) and school FE, instead of classroom FE. Our results are
robust to both specifications.
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and non-STEM subjects.27 Standard errors are clustered at the school-cohort level.28 We estimate

specification (4) using OLS.29 We model f(aijst) in many ways, but our preferred specification

controls for absolute STEM advantage nonlinearly using 10 indicators for a student’s decile position

in the sample-wide distribution of absolute STEM advantage. In every specification with female

interactions, every regressor is interacted with the female dummy.

We are able to interpret the estimates of interest β as the causal effect of comparative STEM

advantage on future STEM study choice, distinct from the effect of absolute STEM advantage,

under two assumptions. The first assumption requires comparative STEM advantage to be un-

correlated with the error term, conditional on absolute STEM advantage, individual controls, and

classroom FE. This assumption would be violated if some students were able to sort themselves

into classrooms based on their expected comparative STEM advantage. This self-sorting behav-

ior is not possible in the institutional setting we exploit in this study. In our quasi-experimental

environment, high school students who attend the same school are assigned to classrooms in al-

phabetical order based on their surname. Students with a surname starting with a letter earlier in

the alphabet are given a classroom number smaller than the classroom number given to students

with a surname starting with a letter later in the alphabet. Table 2 provides evidence that the

alphabetical assignment to classrooms is practically random. This table shows that students are

indeed randomly assigned to classrooms and classroom numbers are not systematically associated

with differences in student characteristics or average or median classroom observable characteris-

tics. In particular, we show that classrooms have similar average GPA (overall and by gender),

proportion of females, and average STEM and non-STEM performance (overall and by gender).

The second assumption requires that any specification error in the functional form for absolute

STEM advantage, f(a), be uncorrelated with the error term in specification (4). The comparative

STEM advantage is the rank measure of absolute STEM advantage. Therefore, any misspecifica-

tion in the functional form for absolute STEM advantage must be uncorrelated with comparative

STEM advantage. If not, β may pick up possible misspecification error in the functional form of

absolute STEM advantage, rather than the actual effect of comparative STEM advantage. We

27As depicted in Figure 2 and Panel A of Table 1, scores in non-STEM subjects are higher on average than scores
in STEM subjects. While this difference in level does not impact our measure of absolute STEM advantage, there
could be a direct effect of a student’s average score in STEM and non-STEM subjects, which could potentially differ
by gender. Indeed, the literature has found that females may be more sensitive to test scores than males (Owen,
2010). Specification (4) disentangles the score level influence by controlling for STEM and non-STEM average raw
performance.

28We follow Abadie et al. (2017), who suggest clustering at a higher level of aggregation than that of the ran-
domization, subject to finite sample issues.

29Ordinary least squares has been found to be as good at modeling classification problems as logistic regression
or linear discriminant analysis (Friedman et al., 2001).
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provide evidence of the validity of this assumption by showing that our results are robust to using

different functional forms for absolute STEM advantage.

5 Results

5.1 Initial STEM Track Enrollment

Table 3 shows our estimates for specification (4), using two different outcomes. For each outcome,

we estimate six regressions that vary only in terms of the functional form of absolute STEM

advantage used in the specification, while all other variables remain the same. The top panel

shows estimates when the outcome is a student’s decision to enroll in a STEM track in grade 11.

This is the first specialization decision the student ever has to make in her school career. In the

first five columns, we use increasing order polynomial functions for absolute STEM advantage.

Column (6) is our most preferred specification, and controls for absolute STEM advantage in a

flexible way. In particular, we include dummy indicators for each of the 10 different decile levels of

absolute STEM advantage. The estimated effect of comparative STEM advantage remains almost

unchanged in all functional forms.

The estimated coefficient of comparative STEM advantage is not significant for males, but it is

significant and equal to 0.19 for females (=0.030+0.161). This means that females who are ranked

at the top of their classroom distribution in grade 10, are roughly 19% more likely to enroll in a

STEM track in grade 11 than females who are ranked at the bottom of their classroom distribution,

ceteris paribus. Our results suggest that an increase in comparative STEM advantage by 10%,

or approximately two positions in the classroom ranking,30 increases the likelihood of choosing a

STEM track in grade 11 by 1.9 percentage points for females. Given that classroom, school, and

cohort characteristics, as well as student characteristics and academic performance in levels are

held constant, we consider the estimated effect of comparative STEM advantage to be sizable.

This suggests that students with a lower comparative STEM advantage may underinvest in

STEM enrollment compared with similar students, who are randomly assigned to different class-

rooms. Our findings suggest that between 4 and 6 percentage points of the 34-percentage-point

gender gap (or 12-18%) in initial STEM specialization in high school are attributable to the influ-

ence of the comparative STEM advantage.31

30The average classroom size in our sample is 20 students. Therefore, an increase in comparative STEM advantage
by 2 positions corresponds to an increase of 10% in the percentile rank of STEM advantage.

31We multiply the difference in comparative STEM advantage between females who go into STEM track and
females who go into non-STEM track with the full effect of comparative STEM advantage on the likelihood of
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5.1.1 Longer-term Outcomes

We examine the effect of comparative STEM advantage on the likelihood of applying to a 4- or

5-year university STEM degree, as well as on performance in STEM courses in grades 11 and 12.

The second panel of Table 3 shows the estimates for specification (4) using a dummy indicator

that takes the value of 1 if a student applies to a STEM degree program, and 0 otherwise, as the

outcome variable. This specification only includes students who enrolled in a STEM track in the

previous grade. Comparative STEM advantage in grade 10 has a positive impact only for females

on future application to a STEM degree program. In particular, an increase in comparative

STEM advantage equivalent to a move up by two rank places in the classroom distribution is

associated with an increase in the likelihood of applying for a STEM degree program by almost

1% for females. The effects are not statistically different from zero for males. This result indicates

that one’s comparative STEM advantage has long-lasting implications 2 years later. It is likely

that between grade 10 and the end of grade 12, students interact with other peers in addition to

their grade 10 classmates. Nevertheless, the effect of grade 10 comparative STEM advantage is

long-lasting and significant.

We further examine the effect of comparative STEM advantage on student performance in

STEM subjects in grades 11 and 12. A higher comparative STEM advantage may encourage study

efforts in STEM subjects. Table 4 displays the results. A higher comparative STEM advantage

is associated with a significant increase in STEM performance only for females in grade 11 (top

panel) and grade 12 (bottom panel). In particular, a 10% increase in comparative STEM advantage

increases females’ performance in STEM by 2.5%32 in grade 11 and 4.3% in grade 12. Both effects

remain similar across all columns of Table 4. We do not find any statistically significant effect of

comparative STEM advantage on future performance for males.33

5.1.2 Nonlinear Effects

Thus far, our main results show the average impact of comparative STEM advantage across dif-

ferent rank positions. In this section, we investigate the potential nonlinear effects of comparative

STEM track choice (in our preferred specification, column 6 of Table 3) to identify how much more likely females
who go into a non-STEM track would be to choose a STEM track if not for the effect of rank in STEM advantage:
0.251(0.030+0.161)=0.048 or 4.8 %. An alternative way would be to compute the effect of rank for females and
males. We multiply the effect of comparative STEM advantage for females by their average rank (0.19+0.409=0.077)
and multiply the effect of comparative STEM advantage for males by their average rank (0.30+0.487=0.0146). We
subtract these two numbers (0.062) to provide the different impact of rank for females and males.

32The estimate is 0.535 for females. Since test score performance is out of 20, this results in an increase equivalent
to about 2.5%.

33These results are in line with those of (Goulas and Megalokonomou, 2015).
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STEM advantage on students’ specialization decisions.

Figure 6 shows the effect of comparative STEM advantage across all possible values of it (0.05

intervals), separately for males and females. In this figure, we focus on a student’s decision to

enroll in a STEM track at the beginning of grade 11. Most of the effects appear small for males

and are mainly concentrated in the middle of the distribution (top figure), while they become

insignificant at the top part of the comparative STEM advantage distribution. For females, the

effects are negative for low values of comparative STEM advantage, but become positive and

significant across the top-half of the distribution of comparative STEM advantage. Overall, it

seems that the effects of the comparative STEM advantage increase only for females when moving

from lower to higher rank positions.

Figure A6 shows the average effect of comparative STEM advantage for different quintiles of

STEM and non-STEM performance distributions. In this figure, we focus again on a student’s

decision to enroll in a STEM track at the beginning of grade 11. An interesting feature of this

analysis is that the effect of comparative STEM advantage shows a different pattern when we focus

on the different quintiles of STEM and non-STEM performance.

In particular, consider the marginal effect of comparative STEM advantage by quintile of

STEM performance shown in the top figure. For students at the top and bottom of the STEM

distribution, the effect of rank is small or insignificant. The effect seems to have a U shape, while

the significant effects are positive and mainly concentrated in the middle of the STEM ability

distribution. Students in the second-highest quintile of the STEM distribution (quintile 4) are

influenced the most by comparative STEM advantage.

The marginal effect of comparative STEM advantage is found to increase when moving from

lower to higher quintiles of non-STEM performance (bottom figure). The effect is positive across

the distribution, but larger for students in the top quintiles of the non-STEM performance distri-

bution. As shown earlier, higher quintiles of non-STEM performance contain more females than

males (Figure A3). This could explain why females are more likely to be affected by comparative

STEM advantage.

5.1.3 Comparative STEM Advantage among Classmates of Same Gender

In this section, we investigate whether the effect of comparative STEM advantage is more pro-

nounced among classmates of the same gender. Table 5 shows estimates using specification (4),

where comparative STEM advantage is computed only among same-gender classmates. For fe-

males, the effect of comparative STEM advantage measured with respect only to other female
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classmates is similar to the main estimates, in which the comparative STEM advantage is com-

puted based on all classmates. The estimates are similar for both outcomes: choice of STEM track

in grade 11 (=0.156 vs. 0.161) and application to a STEM university degree program (=0.087 vs.

0.102). This indicates that for females, these two reference groups are similarly used when making

social comparisons. Among males, the effect of comparative STEM advantage with respect only to

their male classmates is negative and small in magnitude; in the main results, in contrast (Table

3), they were positive and insignificant.

5.1.4 Comparative STEM Advantage with Respect to School-Cohort

In this section, we investigate the impact of comparative STEM advantage computed within a

student’s school-cohort instead of the classroom. The outcome variables we focus on are a student’s

STEM track choice in grade 11 and application to a STEM university degree program. We use

specification (4) for the estimates, and comparative STEM advantage is computed based on a

student’s school-cohort peers. In the previous section, we exploited variation in the dispersion of

absolute STEM advantage across classrooms, controlling for classroom fixed effects (FE); in this

section, we exploit variation that arises from dispersion of the absolute STEM advantage across

different cohorts in the same school.

Table 6 shows the estimates, which indicate that comparative STEM advantage has a much

smaller and weaker effect when it is computed within the school-cohort instead of the classroom.

The estimates are now much smaller compared with the main results (0.037 vs. 0.161 and 0.063

vs. 0.102) and statistically insignificant. In contrast, estimates in the main results were statisti-

cally significant and differed for males and females. Overall, the influence of comparative STEM

advantage among same school-cohort peers is weaker than that of same-classroom peers on later

STEM study choices.

This finding is intuitive for at least two reasons. First, students may be more likely to interact

with peers they share more instruction time with. Students may not be as aware of the performance

of their school-cohort peers as they are of their classmates’ performance. Second, a school cohort is,

by definition, a larger set of students than a classroom. School cohorts may be more representative

of the general student population attending a school over time than classrooms are. Thus, there

may be less variation in student characteristics between different 10th grade cohorts within the

same school than between classrooms within the same school-cohort.
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5.1.5 Robustness Checks

Thus far we have assumed that comparative STEM advantage is orthogonal to the error term

conditional on absolute STEM advantage, student and classroom characteristics. In this section,

we conduct a battery of robustness checks and discuss potential sources of bias. We start by

providing evidence of the robustness of our results with respect to sample attrition. We then show

that our results are robust to using different measures of school performance to calculate absolute

and comparative STEM advantage. In addition, we show that our results are robust to different

definitions of STEM subjects and degree programs. Finally, we report the effect of comparative

non-STEM advantage.

5.1.6 Sample Attrition

Attrition in our sample could happen for two reasons. First, some students may drop out or

transfer from the school during their 10th grade.34 We define these students as “early leavers.”

Second, some students may drop out or transfer from the school at the end of 10th grade, after

having completed the grade.35 We define these students as “attriters.” We do not have neither

early leavers’ performance at the end of grade 10 nor their future enrollment choices. In contrast,

we have attriters’ performance at the end of grade 10 but not their future enrollment choices. Males

are more likely to leave grade 10 early or drop out at the end of grade 10 than females (Table A4).

In our sample, 8.2% of males and 4.3% of females are early leavers, and 17.2% of males and 13.3% of

females are attriters.36 One might worry that students with a lower comparative STEM advantage

would be more likely to drop out during or after the end of grade 10, which could introduce bias in

our estimates. Table A5 shows no strong association between classroom performance (measured

by classroom average GPA) and gender difference in early leavers and attriters.

Then, we explore the association between comparative STEM advantage and student attrition

at the end of grade 10.37 We estimate specification (4) using an indicator variable that takes the

value of 1 if a student is an attriter, and 0 otherwise, as an outcome. Table 7 shows that sample

attrition is not associated with comparative STEM advantage. To further alleviate any concerns

34The compulsory schooling age in Greece is 15 years, the age at which most students graduate from 9th grade.
This suggests that, potentially, students who are likely to drop out of school may do so before they start 10th grade.
Survey data collected by Eurostat revealed an overall school dropout rate of 14.2% for Greece in 2009, identical to
the EU average at the time(Directorate-General for Education, Youth, Sport and Culture, 2019).

35We are not able to follow students who move to another school.
36 These rates are not too far off the mobility rates recorded in other parts of the world. For example, in

2017-18 in Colorado, the school-level average mobility rate was 15.9% for males and 15.9% for females (https:
//www.cde.state.co.us/cdereval/mobility-stabilitycurrent)

37We cannot replicate this analysis for early leavers, since these students drop out before taking the exams. Thus,
the comparative STEM advantage cannot be computed for these students.
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about survival bias, we show that our results remain robust when we employ inverse probability

weights (IPWs) to control for sample attrition. Table A6 shows the results for specification (4),

without and with attrition weights. Our results remain qualitatively unaffected when sample

attrition is accounted for (0.202 vs. 0.182 and 0.161 vs. 0.139 for the quadratic and nonlinear

specifications, respectively).

5.1.7 Impact of Comparative STEM Advantage Using First-semester Performance

In our main analysis we use final exam performance to compute student comparative STEM advan-

tage. We employ final exam performance for two reasons. First, final exam performance provides

a more comparable measure of student performance. Every student in a specific grade and school

takes the same final test in every compulsory course, regardless of their classroom assignment.

This allows us to obtain a comparable measure of performance across different classrooms within

a specific school-cohort. The final exam is designed collectively by all of the instructors teaching

each course, within each school. Thus, the final exam is less likely to be influenced by a particular

teacher’s grading standards or inflation. Second, students decide which track they want to enroll

in after they receive their final exam scores. Therefore, final exam scores reflect the most recent

information students receive right before making their STEM specialization decision.

One might worry that each student’s final exam performance could be affected by interactions

with their classmates during the school year. Thus, a student’s peers may simultaneously influence

her absolute and comparative STEM advantage, measured at the end of the school year. This leads

to potential estimation bias. To alleviate this concern, we reproduce our results from specification

(4) using student performance in the first semester of grade 10, which is the earliest instance of

performance measurement in high school. Table 8 shows these estimates, which remain almost

unchanged compared with the main estimates. In particular, a 10% increase in comparative

STEM advantage increases females’ likelihood of enrolling in a STEM track in 11th grade by 1.7

percentage points, while the equivalent estimate for the main effect was 1.6 percentage points. The

results are robust to the use of the first-semester performance instead of final exam performance

for both outcome variables. The impact on the STEM degree application follows the same pattern

when we use first-semester performance (=0.45) compared with the main results (=0.102), but the

magnitude is smaller. For males, comparative STEM advantage seems to not have a significant

impact on their study decisions.
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5.1.8 Different Definitions of STEM Subjects and Degree Programs

While a vast literature has focused on the underenrollment of women in STEM disciplines, recent

studies argue that gender differences in enrollment are particularly concentrated in math-intensive

science fields (Kahn and Ginther, 2017). Our definition of STEM degree programs thus far includes

only Sciences, Engineering, and Technology departments and not Economics, Business, and Health

Science.38 In Table A7 we show our main results when Economics and Business departments are

included in the definition of STEM (second panel) and when Health Science is included (third

panel).39 In both cases, the results are similar to the main ones (shown in the first panel for

reference).

In our main analysis, we define STEM subjects in grade 10 using a broad definition, in which

we include all subjects related to Algebra, Chemistry, and Physics. We show that our results

are robust to narrower definitions of STEM subjects. Table A8 displays the results using each of

the following subjects separately in the definition of STEM subjects: Algebra, Chemistry40 and

Physics41. The first column shows the baseline results when all three subjects are considered to

be STEM subjects as a benchmark, while the last three columns show results when comparative

STEM advantage is computed separately using only one of the three STEM subjects. The main

estimates are now 0.152 (Algebra), 0.151 (Chemistry), and 0.110 (Physics) compared with 0.161,

which is the main estimate for the interaction term when we average across a student’s performance

in these three subjects. Again, the results remain robust when we use different definitions of STEM

subjects in grade 10.

5.1.9 The Effect of Comparative Non-STEM Advantage

In this section we analyze whether comparative non-STEM advantage has an effect on future study

choices. We rank students within each classroom based on their absolute non-STEM advantage

and compute their comparative non-STEM advantage using (3). Table A9 reports the results for

specification (4), when comparative non-STEM advantage is used. As expected, comparative non-

STEM advantage has a negative and significant effect on track choice at the end of grade 10. The

effect is significant for females, but not significantly different from zero for males. The magnitudes

38We follow the International Standard Classification of Education (ISCED) and define STEM as Natural Sci-
ences, Mathematics and Statistics (ISCED-05); Information and Communication Technologies (ISCED-06); and
Engineering, Manufacturing and Construction (ISCED-07).

39Students from both STEM and non-STEM tracks can apply to Economics/Business and Health Science depart-
ments.

40These are the subjects in which females perform significantly better than males.
41This is the only subject in which there is no significant difference between male and female performance.
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of the estimates are similar to those reported in Table 3. Nevertheless, comparative non-STEM

advantage has no effect on university applications.

6 Potential Mechanisms

In the previous sections, we presented evidence that comparative STEM advantage influences

males and females differently in their STEM specialization decisions. In this section we discuss

the potential mechanisms behind the different responsiveness to comparative STEM advantage for

males and females, using the terminology used in the model in Section 2.

Our theoretical framework considers two potential factors of the heterogeneous influence of

comparative STEM advantage on STEM specialization for males and females. The first is the

marginal monetary return to relative competence and the second is the nonmonetary return of

choosing a specific specialization. If one occupation has a lower (higher) marginal return to relative

competence, λ, than the other occupation, it would require a higher (lower) comparative advantage

to justify specializing in the discipline related to the first occupation. Similarly, if one occupation

is associated with higher (lower) nonmonetary marginal utility, p, than the other occupation, it

would require a lower (higher) advantage compared with one’s peer(s) to justify specializing in the

discipline related to the first occupation.

Males and females may have different monetary returns to STEM occupations, λS. The gender

difference in monetary return of STEM occupations has been established in the empirical literature

(O’Neill, 2003; Weichselbaumer and Winter-Ebmer, 2005; Rose, 2010; Perfect, 2011). In recent

work, Kahn and Ginther (2018) find that gender pay gap in STEM occupations in the United

States is 5.3 and 28.2 percent for unmarried and married individuals, respectively. Survey results

in Greece show that males indeed enjoy a higher salary than females (European Institute for

Gender Equity, 2017), which may reflect a potential gender pay gap in STEM-related occupations.

This may suggest that males have a higher monetary marginal return to relative competence in

STEM versus non-STEM.

If males have higher monetary return of STEM occupations than females (λS
m > λS

f ), the

decision rule (1) differs by gender:

αS
i

αNS
i

αS
−i

αNS
−i

>
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m

pSi,m · λS
m
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αNS
i

αS
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αNS
−i
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i,f · λNS

f

pSi,f · λS
f

(5)

where in both equations the LHS represents the comparative STEM advantage. Assume, for
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simplicity, that pNS
m = pSm = pNS

f = pSm = 1 and that λNS
m = λNS

f . Assume also that males and

females compete with peers of the same competence. Therefore, the two decisions rules (5) become
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· λS
m

λNS
m

> 1

αS
i

αNS
i

αS
−i

αNS
−i

· λS
f

λNS
f

> 1 (6)

Since λS
m > λS

f , and λNS
m = λNS

f , females require a higher comparative STEM advantage than

males to choose a STEM specialization.

The second mechanism behind our theoretical investigation that could explain the differential

effect of comparative STEM advantage on males and females is the nonmonetary return of choosing

a specific specialization. Nonmonetary returns refers to preferences or tastes. Males and females

may face different nonmonetary returns to specializing in STEM. First, STEM-related occupations

tend to be more competitive than non-STEM-related occupations. Several papers find that females

tend to shy away from competition (Niederle and Vesterlund, 2007; Gneezy et al., 2003; Ors et al.,

2013; Orrenius and Zavodny, 2015; Landaud et al., 2016). Second, many studies have examined

the societal and environmental influences that shape female attitudes toward STEM subjects and

occupations.42 The literature has also explored the role of teacher biases,43 parental investments,

and beliefs,44 in shaping females preferences in relation to STEM-related fields. Lastly, women are

underrepresented in STEM occupations in Greece (European Institute for Gender Equity, 2019).

Dille (2018) and Yu (2020) claim that greater exposure to positive female role models and mentors,

especially in the technological sector, increases females’ preference for STEM-related occupations.

If females face lower nonmonetary returns in STEM than males (pSf < pSm), they would face dif-

ferent decision rules. Following a similar rationale as in the previous part of the mechanism, females

need to have a higher comparative STEM advantage than males to choose a STEM specialization.

7 Conclusion

In this paper, we present evidence that students may use two dimensions of comparison when

they make decisions about school track, university degree, and occupation. The first dimension is

42Cvencek et al. (2011) find that as early as elementary school, boys already associate themselves with math
and girls with reading; Guiso et al. (2008) argue that the gender gap is smaller in more gender-equal countries.
Nollenberger et al. (2016), by studying second-generation immigrants, find that about two-thirds of the gender
math gap can be attributed to parents’ cultural attitudes.

43Lavy and Sand (2015) and Lavy and Megalokonomou (2019) document that teacher gender biases may affect
females’ likelihood of specializing in STEM degrees and STEM-related occupations.

44Eccles and Jacobs (1986) and Eccles et al. (1990) have investigated how the mother’s beliefs about her daughter’s
ability impacts performance and the decision to take additional math courses.
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what we call absolute advantage, which refers to the within-individual relative academic strengths

and weakness in STEM subjects compared with non-STEM subjects. The second dimension is

the comparative advantage and concerns a student’s relative standing in terms of her absolute

advantage within her peer group. While the effect of absolute advantage has been widely explored,

we are the first to disentangle the causal effect of comparative STEM advantage from the effect of

absolute STEM advantage on future specialization decisions.

We use data from a large number of high schools in Greece that span from 2001 to 2009

and are linked to students’ university degree applications. We exploit the institutional setting

in Greece by which students are practically randomly assigned to classrooms at the beginning

of grade 10. We proxy a student’s comparative advantage in STEM subjects by using a their

rank in absolute STEM advantage in grade 10. This rank is quasi-randomly assigned to students,

given their absolute STEM advantage. We present extensive evidence to support the validity of

our identification strategy by showing that students’ classroom allocation in grade 10 is practically

random. We then examine the effect of a student’s comparative STEM advantage on her subsequent

decision to enroll in a STEM track in grade 11, on subsequent STEM performance, and on the

decision to apply for a 4- or 5- year university degree in a STEM major 2 years later.

We find that females perform at least as well as males in STEM subjects, but much better than

males in non-STEM subjects. This implies that females have a lower absolute STEM advantage

with respect to their classmates and a lower comparative advantage. We find that increasing a

student’s comparative advantage in STEM within her classroom by two positions increases her

likelihood of enrolling in a STEM track by 1.9% for females, but has much smaller or insignificant

effect on males. We also find that a student’s comparative advantage in STEM in grade 10

has longer-term implications. In particular, we find that an increase in a student’s 10th grade

comparative STEM advantage by 10% increases her likelihood of applying to a STEM university

degree program by around 1% for females; males are less or not affected. Comparative STEM

advantage has a significant effect on STEM performance in grades 11 and 12. Additionally, we

find similar effects when the comparative advantage is computed with respect to the same-gender

peers in the classroom or to the school-cohort.

We conduct several robustness exercises to provide further credibility for causal interpretation

of the effects of comparative STEM advantage. First, we show that a student’s comparative

advantage in STEM subjects is uncorrelated with school dropout decisions. Second, we show that

our results are robust to using students’ performance measured earlier in grade 10. Third, we

show that our results remain similar when we use alternative definitions of STEM subjects and
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university degree programs.

We develop a simple theoretical model to explain the role of comparative STEM advantage in

STEM study decisions. From this model, we derive two mechanisms to explain the larger effect of

comparative advantage on females. Lower monetary returns in STEM occupations for females and

different preferences for STEM occupations may explain the higher impact of comparative STEM

advantage on STEM study choices.

Our analysis is highly policy-relevant as it provides an additional channel to explain the under-

representation of women in STEM tracks. Our findings suggest that 4-6 percentage points of the

34-percentage-point gender gap (or 12-18%) in STEM specialization in high school are attributable

to the influence of the comparative STEM advantage. Our research concludes that competition

discourages females from studying STEM early on, in the first instance of specialization. This

suggests that if females were given the option to specialize away from STEM study at an even

earlier stage than grade 11, it is likely they would do so and would acquire even less STEM-related

training during their school career.

The method we use to measure comparative advantage and to identify the strengths within the

individual and across individuals is general and could be applied to other contexts. Any context

in which comparisons with competitors emerge along multiple dimensions—such as the labor or

the marriage market—could profit from our approach to quantifying the object of comparison. A

benefit of using comparative advantage as a measure of relative strength is that it carries economic

intuition, and decisions based on comparative advantage are economically justifiable.
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Table 1: Descriptive Statistics

Male Female Difference p-value

(1) (2) (3) (4)

Panel A: Performance in Grade 10

Algebra 9.433 9.873 0.440 0.000
Physics 10.325 10.373 0.048 0.188
Chemistry 10.405 10.963 0.559 0.000
Modern Greek 12.876 14.220 1.344 0.000
Greek Literature 12.099 13.922 1.824 0.000
Ancient Greek 11.249 12.861 1.612 0.000

Panel B: Constructed Variables in Grade 10

Own Grade in STEM 10.054 10.403 0.349 0.000
Own Grade in non-STEM 12.074 13.668 1.594 0.000
Class Average Grade in STEM 10.202 10.184 -0.018 0.135
Class Average Grade in non-STEM 12.892 12.881 -0.011 0.329
Comparative STEM Advantage 0.487 0.409 -0.077 0.000

Panel C: Outcome Variables on Track and University Choices

STEM Track in Grade 11 0.812 0.472 -0.340 0.000
Applied for a STEM Degree 0.627 0.565 -0.062 0.000
Applied for an Economics and Business Degree 0.272 0.228 -0.044 0.000
Applied for a Health Sciences Degree 0.119 0.321 0.203 0.000
Applied for a Humanities Degree 0.363 0.626 0.262 0.000

Notes: Panel A reports gender differences in performance for the six subjects we use to construct our
measure for the average performance in STEM and Non-STEM in grade 10. Raw scores are out of 20.
Panel B shows the gender differences in one’s own and classroom average performance in STEM and Non-
STEM subjects, as well as the comparative STEM advantage. Panel C reports the gender differences in
track choice and university-related outcomes. Applied for a STEM department is conditional on attending
a STEM track in grade 12. Applied for a Humanities department is conditional on attending a non-STEM
track in grade 12. For each panel, we report summary statistics for male and female students (columns 1
and 2, respectively); the gender difference between column (2) and (1) (column 3); and p-values for the
t-test on the gender difference (column 4).
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Table 2: Evidence of Random Assignment of Students into Classrooms

Class Av.
GPA

Class Median
GPA

Prop.
Female

Av. GPA
Female

Av. GPA
Male

Av. STEM
GPA Female

Av. STEM
GPA Male

Av. non-STEM
GPA Female

Av. non-STEM
GPA Male

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Class number=1 -0.167 -0.249 -0.024 -0.174 -0.104 -0.011 -0.021 -0.183 -0.100

(0.129) (0.153) (0.022) (0.153) (0.236) (0.257) (0.412) (0.216) (0.280)
Class number=2 -0.230∗ -0.291∗ -0.029 -0.292∗ -0.139 -0.191 -0.095 -0.388∗ -0.157

(0.130) (0.153) (0.022) (0.157) (0.237) (0.255) (0.417) (0.220) (0.282)
Class number=3 -0.153 -0.206 -0.019 -0.214 -0.043 -0.136 0.018 -0.292 -0.028

(0.129) (0.153) (0.021) (0.151) (0.234) (0.248) (0.415) (0.210) (0.275)
Class number=4 -0.122 -0.175 0.005 -0.168 -0.086 -0.156 -0.067 -0.222 -0.146

(0.128) (0.154) (0.022) (0.155) (0.225) (0.250) (0.412) (0.220) (0.265)
Class number=5 -0.028 -0.083 -0.006 -0.154 0.122 -0.022 0.289 -0.310 0.065

(0.130) (0.163) (0.024) (0.134) (0.260) (0.248) (0.439) (0.201) (0.288)
Obs. 3,432 3,432 3,432 3,426 3,382 3,426 3,382 3,426 3,382
Mean of Y 14.42 14.32 0.55 14.77 13.97 10.72 10.56 13.99 12.54
Av. N. of classes per school 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40
School x Year FE � � � � � � � � �
F-Stat. Model 2.17 1.76 2.15 1.95 2.00 1.33 1.56 3.16 1.39
P-value of F-model 0.06 0.12 0.06 0.09 0.08 0.25 0.17 0.01 0.23

Notes: The table shows results of the estimated effects of the classroom number on a variety of outcomes. Outcome variables are reported in the column.
Specifically, we regress the classroom number on average classroom GPA (column 1), median classroom GPA (column 2), the proportion of females in the
classroom (column 3), the average GPA of females in the classroom (column 4), the average GPA of females in the classroom (column 5), the average GPA of
females in STEM (column 6), the average GPA of males in STEM (column 7), the average GPA of females in non-STEM (column 8), and the average GPA
of males in non-STEM (column 9). Classroom is the unit of observation. F-statistics for the joint significance of the regressors suggest that the classroom
number is not associated with differences in classroom-level outcomes. * p < 0.1; ** p < 0.05; *** p < 0.01.



Table 3: The Effect of Comparative STEM Advantage on Subsequent Tracks and University
Choices using Different Functional Forms

Linear Quadratic Cubic Quartic Quintic Nonlinear
(1) (2) (3) (4) (5) (6)

STEM Track in Grade 11

Comparative STEM Advantage 0.122∗∗∗ 0.038∗ 0.062∗∗∗ 0.039∗ 0.034 0.030
(0.018) (0.020) (0.020) (0.021) (0.021) (0.021)

Comparative STEM Advantage × Female 0.153∗∗∗ 0.202∗∗∗ 0.165∗∗∗ 0.159∗∗∗ 0.162∗∗∗ 0.161∗∗∗

(0.021) (0.022) (0.022) (0.022) (0.022) (0.022)
Obs. 72,940 72,940 72,940 72,940 72,940 72,940
Mean of Y 0.63 0.63 0.63 0.63 0.63 0.63
St. Dev. Y 0.48 0.48 0.48 0.48 0.48 0.48
Raw Gender Gap Y -0.34 -0.34 -0.34 -0.34 -0.34 -0.34

Application for STEM University Degree

Comparative STEM Advantage 0.070∗∗∗ -0.040 -0.046∗ -0.040 -0.033 -0.014
(0.024) (0.026) (0.026) (0.027) (0.027) (0.028)

Comparative STEM Advantage × Female 0.093∗∗∗ 0.111∗∗∗ 0.112∗∗∗ 0.110∗∗∗ 0.108∗∗∗ 0.102∗∗∗

(0.027) (0.028) (0.028) (0.028) (0.028) (0.028)
Obs. 45,259 45,259 45,259 45,259 45,259 45,259
Mean of Y 0.72 0.72 0.72 0.72 0.72 0.72
St. Dev. Y 0.45 0.45 0.45 0.45 0.45 0.45
Raw Gender Gap Y -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

Classroom FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: This table reports the estimated effects of comparative STEM advantage on track and university degree choices. The
outcome variables are: (a) an indicator for whether a student enrolls in a STEM track in grade 11 (top panel), and (b) an
indicator for whether a student applies for a STEM university degree 2 years later (middle panel). For each of the two outcomes,
we run different specifications for different degrees of polynomials for the absolute STEM advantage (columns 1-5) and a nonlinear
specification, using binary indicators for each decile of the rank (column 6). Each regression controls for student gender, absolute
STEM advantage, STEM, non-STEM performance, interactions of individual terms with gender, and classroom FE. Standard
errors are clustered at the school-cohort level. The last row in each panel shows the slope coefficient of the regression of each
outcome variable on a female indicator, reflecting the gender gap in that outcome. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 4: The Effect of Comparative STEM Advantage on Future Performance

Linear Quadratic Cubic Quartic Quintic Nonlinear
(1) (2) (3) (4) (5) (6)

STEM Performance in Grade 11

Comparative STEM Advantage -0.190 0.292∗∗ 0.298∗∗ 0.204 0.190 0.067
(0.135) (0.141) (0.143) (0.151) (0.151) (0.153)

Comparative STEM Advantage × Female 0.570∗∗∗ 0.570∗∗∗ 0.439∗∗∗ 0.441∗∗∗ 0.455∗∗∗ 0.462∗∗∗

(0.145) (0.145) (0.149) (0.152) (0.152) (0.151)
Obs. 68,425 68,425 68,425 68,425 68,425 68,425
Mean of Y 10.22 10.22 10.22 10.22 10.22 10.22
St. Dev. Y 5.20 5.20 5.20 5.20 5.20 5.20

STEM Performance in Grade 12

Comparative STEM Advantage -0.043 0.213 0.262 0.156 0.143 0.062
(0.198) (0.210) (0.215) (0.226) (0.226) (0.226)

Comparative STEM Advantage × Female 0.839∗∗∗ 0.899∗∗∗ 0.798∗∗∗ 0.783∗∗∗ 0.794∗∗∗ 0.786∗∗∗

(0.205) (0.205) (0.211) (0.215) (0.215) (0.214)
Obs. 68,425 68,425 68,425 68,425 68,425 68,425
Mean of Y 11.06 11.06 11.06 11.06 11.06 11.06
St. Dev. Y 5.45 5.45 5.45 5.45 5.45 5.45

Classroom FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: This table reports results of the estimated effects of comparative advantage using the main specification (4), while two
outcomes are used: (1) a student average performance in STEM subjects at the end of 11th grade (top panel) and (2) a student’s
average performance in STEM subjects at the end of 12th grade (bottom panel). For each of the two outcomes we run different
specifications for different degrees of polynomials for STEM advantage (columns 1-5) as well as a nonlinear specification, using
dummy variables for each decile of rank (column 6). Each regression controls for student gender, absolute STEM advantage,
STEM, non-STEM performance, interactions of individual terms with gender, and classroom FE. Standard errors are clustered
at the school-cohort level. The last row in each panel shows the slope coefficient of the regression of each outcome variable on a
female indicator, reflecting the gender gap in that outcome. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 5: The Effect of Comparative STEM Advantage among Same Gender Classmates on
Subsequent Tracks and University Choices

Linear Quadratic Cubic Quartic Quintic Nonlinear
(1) (2) (3) (4) (5) (6)

STEM Track in Grade 11

Comparative STEM Advantage Same
Gender Classmates -0.005 -0.042∗∗∗ -0.025∗ -0.035∗∗∗ -0.035∗∗∗ -0.038∗∗∗

(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)

Comparative STEM Advantage Same
Gender Classmates × Female 0.165∗∗∗ 0.194∗∗∗ 0.164∗∗∗ 0.157∗∗∗ 0.158∗∗∗ 0.156∗∗∗

(0.018) (0.019) (0.019) (0.019) (0.019) (0.019)
Obs. 72,911 72,911 72,911 72,911 72,911 72,911
Mean of Y 0.63 0.63 0.63 0.63 0.63 0.63
St. Dev. Y 0.48 0.48 0.48 0.48 0.48 0.48
Raw Gender Gap Y -0.34 -0.34 -0.34 -0.34 -0.34 -0.34

Application for STEM University Degree

Comparative STEM Advantage Same
Gender Classmates 0.026 -0.014 -0.017 -0.014 -0.013 -0.006

(0.016) (0.017) (0.017) (0.017) (0.017) (0.017)

Comparative STEM Advantage Same
Gender Classmates × Female 0.089∗∗∗ 0.092∗∗∗ 0.093∗∗∗ 0.092∗∗∗ 0.092∗∗∗ 0.087∗∗∗

(0.023) (0.023) (0.023) (0.024) (0.024) (0.024)
Obs. 45,242 45,242 45,242 45,242 45,242 45,242
Mean of Y 0.72 0.72 0.72 0.72 0.72 0.72
St. Dev. Y 0.45 0.45 0.45 0.45 0.45 0.45
Raw Gender Gap Y -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

Classroom FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: This table reports results of the estimated effects of comparative advantage using the main specification (4), while
the comparative advantage is computed using the within-classroom rank across classmates of the same gender. We exclude
classrooms with only one female or only one male student. For each of the two outcomes (STEM track choice in grade 11
and application to a STEM degree program), we run different specifications for different degrees of polynomials for STEM
advantage (columns 1-5) as well as a nonlinear specification that uses dummy variables for each decile of rank (column 6). Each
regression controls for student gender, absolute STEM advantage, STEM, non-STEM performance, interactions of individual
terms with gender, and classroom FE. Standard errors are clustered at the school-cohort level. The last row in each panel
shows the slope coefficient of the regression of each outcome variable on a female indicator, reflecting the gender gap in that
outcome. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 6: The Effect of Comparative STEM Advantage within School-Cohort on Subsequent
Tracks and University Choices

Linear Quadratic Cubic Quartic Quintic Nonlinear
(1) (2) (3) (4) (5) (6)

STEM Track in Grade 11

Cohort Comparative STEM Advantage 0.231∗∗∗ 0.107∗∗∗ 0.163∗∗∗ 0.147∗∗∗ 0.138∗∗∗ 0.135∗∗∗

(0.021) (0.027) (0.027) (0.031) (0.031) (0.031)

Cohort Comparative STEM Advantage × Female 0.056∗ 0.159∗∗∗ 0.083∗∗ 0.049 0.054 0.037
(0.032) (0.034) (0.036) (0.037) (0.037) (0.038)

Obs. 72,943 72,943 72,943 72,943 72,943 72,943
Mean of Y 0.63 0.63 0.63 0.63 0.63 0.63
St. Dev. Y 0.48 0.48 0.48 0.48 0.48 0.48
Raw Gender Gap Y -0.34 -0.34 -0.34 -0.34 -0.34 -0.34

Application for STEM University Degree

Cohort Comparative STEM Advantage 0.131∗∗∗ -0.031 -0.041 -0.033 -0.020 0.016
(0.030) (0.036) (0.036) (0.041) (0.041) (0.043)

Cohort Comparative STEM Advantage × Female 0.056 0.099∗∗ 0.098∗∗ 0.096∗ 0.088∗ 0.063
(0.043) (0.045) (0.046) (0.049) (0.049) (0.049)

Obs. 45,269 45,269 45,269 45,269 45,269 45,269
Mean of Y 0.72 0.72 0.72 0.72 0.72 0.72
St. Dev. Y 0.45 0.45 0.45 0.45 0.45 0.45
Raw Gender Gap Y -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

School x Year FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: This table reports results of the estimated effects of comparative advantage using the main specification (4), while the comparative
advantage is computed using the within school-cohort rank. For each of the two outcomes (grade 11 STEM track choice and application
to STEM degree), we run different specifications for different degrees of polynomials for STEM advantage (columns (1)-(5)) as well as a
nonlinear specification, using dummy variables for each decile of rank (column 6). Each regression controls for student gender, absolute
STEM advantage, STEM, non-STEM performance, interactions of individual terms with gender, and school-cohort FE. Standard errors
are clustered at the school-cohort level. The last row in each panel shows the slope coefficient of the regression of each outcome variable
on a female indicator, reflecting the gender gap in that outcome. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 7: The Effect of Comparative STEM Advantage on Attrition

Attrition at End of Grade 10

Comparative STEM Advantage 0.011
(0.019)

Comparative STEM Advantage × Female 0.001
(0.023)

Obs. 86,417
Classroom FE Yes
Controls Yes

Notes: This table reports results of the estimated effects of the comparative STEM
advantage on grade attrition in grade 11. Estimates are derived using specification (4),
while the outcome variable is an indicator that becomes equal to one if a student drops out
from the sample. Each regression controls for student gender, a second-order polynomial
for absolute STEM advantage, STEM, non-STEM performance, interactions of individual
terms with gender, and classroom FE. Standard errors are clustered at the school-cohort
level. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table 8: The Effect of Comparative STEM Advantage using First-Semester Performance on
Subsequent Tracks and University Choices

Linear Quadratic Cubic Quartic Quintic Nonlinear
(1) (2) (3) (4) (5) (6)

STEM Track in Grade 11

Comparative STEM Advantage 0.088∗∗∗ 0.017 0.014 -0.011 -0.008 0.001
(0.015) (0.016) (0.017) (0.018) (0.018) (0.019)

Comparative STEM Advantage × Female 0.188∗∗∗ 0.209∗∗∗ 0.168∗∗∗ 0.174∗∗∗ 0.171∗∗∗ 0.166∗∗∗

(0.018) (0.018) (0.019) (0.019) (0.019) (0.020)
Obs. 72,887 72,887 72,887 72,887 72,887 72,887
Mean of Y 0.63 0.63 0.63 0.63 0.63 0.63
St. Dev. Y 0.48 0.48 0.48 0.48 0.48 0.48
Raw Gender Gap Y -0.34 -0.34 -0.34 -0.34 -0.34 -0.34

Application for STEM University Degree

Comparative STEM Advantage -0.016 0.010 -0.008 0.001 0.001 0.007
(0.020) (0.023) (0.023) (0.025) (0.025) (0.026)

Comparative STEM Advantage × Female 0.064∗∗∗ 0.056∗∗ 0.051∗∗ 0.046∗ 0.046∗ 0.044∗

(0.024) (0.025) (0.025) (0.026) (0.026) (0.025)
Obs. 45,253 45,253 45,253 45,253 45,253 45,253
Mean of Y 0.72 0.72 0.72 0.72 0.72 0.72
St. Dev. Y 0.45 0.45 0.45 0.45 0.45 0.45
Raw Gender Gap Y -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

Classroom FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: This table reports results of the estimated effects of comparative advantage using the main specification (4). We now
compute comparative advantage based on a student’s midterm performance in the first semester, rather than her final exam score
(Table 3). Each regression controls for student gender, absolute STEM advantage, STEM, non-STEM performance, interactions
of individual terms with gender, and classroom FE. Standard errors are clustered at the school-cohort level. The last row in each
panel shows the slope coefficient of the regression of each outcome variable on a female indicator, reflecting the gender gap in
that outcome. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Figure 1: Timeline of Students Decision Making in High School and Tertiary Education
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Notes: This figure displays the timeline of student decisions from senior high school to university. At the beginning of grade 10,
students are assigned to the high school serving the zone of their residential address. Students start high school at the age of 15.
The compulsory school age in Greece is 15, so students who wish to complete only compulsory education drop out before entering
the 10th grade. In 10th grade, the first grade of senior high school, students are allocated to classrooms in an alphabetical order
based on students’ surnames. Students remain in their assigned classroom throughout high school. Students also remain with
the same classroom peers for at least every compulsory subject. In 10th grade, all students take 12 compulsory general education
courses and 1-2 elective courses. At the end of the school year, students take an exam on all 12 compulsory courses. We use the
end-of-year (but also first semester) performance in compulsory subjects to compute their STEM advantage and comparative
STEM advantage. Starting from 11th grade, students are able to choose electives that allow them to specialize in one of three
tracks: classics, which we identify as non-STEM track, science, and information technology which we identify as STEM tracks.
All schools offer these three tracks. Each track offers different subjects, which are compulsory, and all students in a given track
have to take those subjects. To apply to a university degree program a student must take standardized national exams in a set
of subjects that includes the subjects of their 12th grade track. In addition to the track subjects, students must take exams
in compulsory core subjects that are the same for all students, regardless of track. After taking national exams, university
applicants submit a list of their preferred tertiary degree programs to the Ministry of Education. Although students can apply
to many degree programs from all high school tracks, some programs assign a higher weight to specific subjects when calculating
the university admission score. (see https://eacea.ec.europa.eu/national-policies/eurydice/content/greece_en).
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Figure 2: Performance in STEM and Non-STEM Subjects in 10th Grade by Gender
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Notes: This graph displays the performance (out of 20) in six subjects, for males and females separately. Final exam scores are
used to measure student performance. Females perform significantly better in almost every subject (except for Physics, where
the difference is not statistically different from zero), but their performance advantage is even higher in non-STEM subjects
(Modern Greek, Greek Literature, and Ancient Greek) compared with STEM subjects (Algebra, Chemistry, and Physics).
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Figure 3: Variation of Comparative STEM Advantage with Respect to STEM Advantage
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Notes: This graph shows the relation between students’ absolute and comparative STEM advantages. For each value of absolute
STEM advantage between 0.4 and 1.4, the box plot displays the median, the first quartile to third quartile (solid box), and the
minimum and maximum of comparative STEM advantage.
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Figure 4: Differential Comparative STEM Advantage for Males and Females
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Notes: This figure shows the percentage of females and males in each percentile rank in STEM advantage. Females are much
less likely than males to have a higher percentile rank in STEM advantage (i.e., comparative STEM advantage).
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Figure 5: Identifying Variation in Peers’ Dispersion of Absolute STEM Advantage

Classroom 1 in School A

Classroom 2 in School AXAbsolute STEM Advantage

Notes: This figure illustrates the variation we exploit to identify the effect of comparative STEM advantage. Consider that there
are two classrooms in school A, i.e., classroom 1 and classroom 2. Each vertical line represents a particular student’s absolute
STEM advantage position in the classroom performance distribution. Both classrooms have the same number of students and
the same average absolute STEM advantage (indicated by the red vertical line). Classroom 1 has a higher dispersion of absolute
STEM advantage than classroom 2. Two students with the same own absolute STEM advantage and the same average classroom
characteristics (including average absolute STEM advantage) could have different comparative STEM advantage (proxied by the
within-classroom rank position of absolute STEM advantage) because of different dispersion of peers’ absolute STEM advantage
in different classrooms due to random peer group formation.
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Figure 6: Nonlinear Effect of Comparative STEM Advantage by Gender
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Notes: These two graphs plot the estimates for comparative STEM advantage from model (4) on STEM track choice in grade
11 at various levels of comparative STEM advantage. The top graph reports the estimates only for males, and the bottom graph
only for females.
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Appendix

Descriptive Evidence of the Effect of STEM and non-STEM Performance

Panel A of Table A1 focuses on the subgroup of students who enroll in a non-STEM (columns 1 and 6) and

STEM track in 11th grade (columns 2 and 7), separately. As shown in columns 1 and 2, males who enroll

in a STEM track in 11th grade have a higher STEM performance but slightly lower non-STEM performance

in 10th grade than males who go into non-STEM in 11th grade. The corresponding differences and p-values

are shown in columns (3) and (4), respectively. Females who enroll in a STEM track in grade 11 (column

7) have a higher performance in both types of subjects compared with females who go into a non-STEM

track (column 6). The corresponding differences in column (8) are both positive and statistically significant

(column 9). Females going into STEM and non-STEM tracks have a higher performance in both types of

subjects than males going into STEM and non-STEM tracks, respectively. The classroom average grade in

STEM and non-STEM is very similar for males and females. Males and females who enroll into a STEM

track have a higher absolute STEM advantage.

Panel B of Table A1 focuses on the subgroup of students who apply for a non-STEM (columns 1 and 6)

and STEM university degree (columns 2 and 7), separately. Comparing columns (1) to (6) and (2) to (7), we

find that females who apply to both types of degree programs outperform males in both types of subjects.

Also, males and females who apply to a STEM degree program have a higher 10th grade performance in both

types of subjects compared with those who do not apply to a non-STEM degree program. Differences in

classroom average grades in the two types of subjects between the two groups of university applicants are

small (0.305 and 0.193 for males in STEM and non-STEM, respectively, and 0.118 and 0.086 for females in

STEM and non-STEM, respectively). Males and females who apply for a STEM university degree have a

higher absolute STEM advantage.
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Table A1: Descriptive Statistics by Gender and Enrollment

Male Female

Panel A
Non-STEM

Track Enrollment
in Grade 11

STEM
Track Enrollment

in Grade 11
Diff. p-value

Non-STEM
Track Enrollment

in Grade 11

STEM
Track Enrollment

in Grade 11
Diff. p-value

(1) (2) (3) (4) (6) (7) (8) (9)

Own Grade in STEM 8.019 11.088 3.069 0.000 9.035 12.528 3.494 0.000
Own Grade in non-STEM 12.787 12.414 -0.373 0.000 13.821 14.093 0.273 0.000
Comparative STEM Advantage 0.278 0.547 0.270 0.000 0.296 0.547 0.251 0.000
Class Av. Grade in STEM 10.084 10.286 0.202 0.000 10.115 10.319 0.204 0.000
Class Av. Grade in non-STEM 13.005 12.908 -0.098 0.000 12.918 12.892 -0.025 0.117
Own Absolute Adv. in STEM 0.622 0.891 0.269 0.000 0.645 0.884 0.240 0.000
Class Absolute Adv. in STEM 0.781 0.802 0.022 0.000 0.789 0.807 0.018 0.000
Obs 6,185 26,725 21,177 18,925

Panel B
Non-STEM
University
Application

STEM
University
Application

Diff. p-value
Non-STEM
University
Application

STEM
University
Application

Diff. p-value

Own Grade in STEM 8.717 11.972 3.256 0.000 11.202 13.147 1.944 0.000
Own Grade in non-STEM 10.884 12.975 2.091 0.000 13.232 14.482 1.251 0.000
Comparative STEM Advantage 0.454 0.583 0.129 0.000 0.492 0.573 0.081 0.000
Class Av. Grade in STEM 10.063 10.368 0.305 0.000 10.241 10.359 0.118 0.000
Class Av. Grade in non-STEM 12.766 12.959 0.193 0.000 12.833 12.919 0.086 0.001
Own Absolute Adv. in STEM 0.799 0.926 0.126 0.000 0.840 0.906 0.066 0.000
Class Absolute Adv. in STEM 0.794 0.806 0.012 0.000 0.806 0.808 0.002 0.378
Obs 7,058 19,523 5,560 13,188

Notes: This table shows summary statistics for student’s own performance in STEM and non-STEM subjects in grade 10, classroom average
performance in STEM and non-STEM subjects in grade 10, own and classroom absolute STEM performance in grade 10 for different subgroups by
gender, separately. Panel A reports these statistics for students who enroll in a non-STEM and STEM tracks in grade 11 for males and females,
separately. Panel B reports these statistics for students who apply for a non-STEM and STEM university degree for males and females, separately.
Columns (3) and (8) report the differences and columns (4) and (9) report the p-values for the t-test on the difference between non-STEM and STEM
enrollment.
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The Effect of Absolute STEM Advantage

In this section, we examine empirically the following hypothesis: The higher an individual’s competence

in STEM relative to their competence in non-STEM, the more likely they are to specialize in STEM, while

controlling for his/her peers’ competence in STEM relative to non-STEM. Similarly, the higher a female

student’s peers’ competence in STEM relative to non-STEM, the less likely she is to specialize in STEM,

while keeping constant her competence in STEM relative to non-STEM.

An individual’s competence in STEM relative to their competence in non-STEM can be proxied using

definition (2). A similar definition can be used to proxy a student’s peers’ competence in STEM relative to

non-STEM. We investigate the association between own and peer advantage in STEM using the following

specification:

Yijt =β0 + β1
Grade STEMijt

Grade nonSTEM ijt︸ ︷︷ ︸
STEM advantage

+β2
Av Classroom Grade STEMijt

Av Class Grade nonSTEM ijt︸ ︷︷ ︸
Classroom STEM advantage

(A1)

+ μst + εijt

Table A2 presents our estimates of model (A1). Higher (absolute) STEM advantage increases the likelihood

to enroll in a STEM track in grade 11. Moreover, (absolute) STEM advantage is positively correlated with

the likelihood of applying for a STEM university degree program.
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Table A2: Association between Students’ Own and Classroom STEM Advantage on Future Study
Decisions

STEM Track
in Grade 11

Applied for STEM
University Degree

(1) (2) (3) (4)
Female -0.287∗∗∗ -0.433∗∗∗ -0.024∗∗∗ 0.037

(0.004) (0.024) (0.005) (0.027)

Abs. STEM Advantage 0.652∗∗∗ 0.448∗∗∗ 0.274∗∗∗ 0.285∗∗∗

(0.008) (0.009) (0.011) (0.012)

Abs. STEM Advantage × Female 0.430∗∗∗ -0.035∗∗

(0.012) (0.018)

Class Abs. STEM Advantage -0.299∗∗∗ -0.173∗∗∗ -0.081∗∗∗ -0.064∗∗

(0.025) (0.029) (0.028) (0.031)

Class Abs. STEM Advantage × Female -0.245∗∗∗ -0.037
(0.031) (0.036)

Obs. 72,943 72,943 45,269 45,269
School x Year FE Yes Yes Yes Yes
Controls No No No No
Mean Y 0.63 0.63 0.72 0.72
St. Dev Y 0.48 0.48 0.45 0.45
Raw Gender Gap Y -0.34 -0.34 -0.03 -0.03

Notes: This table examines the patterns of track choice in grade 11 and university departments
application. Importantly, the table has no intent to identify causal inference, but rather questions
whether the gender gap in STEM enrollment can be explained by gender difference in student perfor-
mance. The table reports the results of a specification in which the track enrollment and university
application decisions of student i, in school j, cohort t are regressed on their own and classmates’
average absolute STEM advantage, school-by-cohort FE, and student’s characteristics, such as gen-
der and year of birth. Each regression includes school-cohort FE. Standard errors are clustered at
the school-cohort level. The last row in each panel shows the slope coefficient of the regression of
each outcome variable on a female indicator, reflecting the gender gap in that outcome. * p < 0.1;
** p < 0.05; *** p < 0.01.
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Table A3: Association between Cardinal Comparative STEM Advantage and Future Study De-
cisions

STEM Track
in Grade 11

Applied for STEM
University Degree

(1) (2) (3) (4)
Cardinal Comparative STEM Adv. 0.499∗∗∗ 0.346∗∗∗ 0.209∗∗∗ 0.217∗∗∗

(0.006) (0.007) (0.008) (0.009)

Cardinal Comparative STEM Adv. × Female 0.317∗∗∗ -0.024∗

(0.010) (0.014)
Obs. 72,940 72,940 45,259 45,259
Classroom FE Yes Yes Yes Yes
Controls No No No No
Mean Y 0.63 0.63 0.72 0.72
St. Dev Y 0.48 0.48 0.45 0.45
Raw Gender Gap Y -0.34 -0.34 -0.03 -0.03

Notes: This table explores the patterns of track choice in grade 11 and university department application.
Importantly, the table has no intent to identify causal inference, but rather questions whether the gender
gap in STEM specialization can be explained by gender differences in student performance. The table
reports the results of a specification in which the track enrollment and university application decisions
of student i, in classroom j, in school s, in cohort t are regressed on their cardinal comparative STEM
advantage (as defined in the LHS of equation (1)). The regression includes classroom FE and student’s
characteristics, such as gender and year of birth. Standard errors are clustered at the school-cohort level.
The last row in each panel shows the slope coefficient of the regression of each outcome variable on a
female indicator, reflecting the gender gap in that outcome. * p < 0.1; ** p < 0.05; *** p < 0.01.

51



Dealing with Possible Sample Selection

In order to deal with possible bias caused by sample selection, we employ an Inverse-probability-weighted

estimator for model (4). In particular, we assume that the process that causes some of the data to be missing

is a function of observable covariates and a random process that is independent of the outcome. First, we

formally test which observable students or class’s characteristics are correlated with attrition, by estimating a

probit model for attrition. Perhaps not surprisingly, attrition is correlated with student performance in STEM

and non-STEM subjects, as well as students’ STEM advantage. Additional variables that are significant

predictors of attrition are the dummy for female, the interaction between non-STEM average performance

and female, and average classroom performance in STEM and non-STEM subjects. Chi-square statistics for

the Wald test of whether these variables are jointly equal to zero is 757.64, suggesting that these variables

are jointly statistically different from zero at the highest level of significance. In other words, these variables

are significant predictors of students’ transfer out.

Given that the transfer-out rate may be non-random, we compute the inverse probability weights for

Model (4) to correct for attrition. We compute the predicted probabilities and the inverse probability weights

from the restricted probit. Intuitively, this procedure gives higher weight to students with characteristics

similar to those of students who subsequently transfer out. Table A6 shows the main result for our model

when attrition is not controlled for and when it is controlled. The results remain largely unaffected.

Table A4: Gender Difference in Early Leavers and Students’ Attrition Rate

Male Female Difference p-value

(1) (2) (3) (4)

Early leavers 0.082 0.043 -0.039 0.000
Students’ attrition 0.172 0.133 -0.039 0.000

Notes: This table reports male and female early leavers and attrition
rate (in columns 1 and 2 respectively). Column 3 reports gender dif-
ferences in early leavers and student attrition. Column 4 reports the
p-value for the t-test on the gender difference.
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Table A5: Association between Classroom Performance and Gender Difference in Sample Attri-
tion

GD Early Leavers GD Students’ Attrition

(1) (2)
Classroom GPA -0.272 -0.029

(0.195) (0.223)
Obs. 3,428 3,428
School x Year FE Yes Yes

Notes: This table reports results of the estimated effects of the classroom
average GPA on two types of attrition. Column (1) shows results of the es-
timated effect of classroom average GPA on the gender difference (GD, male
minus female) in early leavers in each classroom. We define early leavers as
those students who do not complete grade 10, but drop out from school early
during their 10th grade. Column (2) shows results of the estimated effect of
classroom average GPA on the gender difference (GD) in students’ attrition
in each classroom. We define attriters as students who leave the sample at
the end of 10th grade after they complete grade 10. The unit of observation
is the classroom. Clustered standard errors at the school level are reported in
parentheses.
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Table A6: The Effect of Comparative STEM Advantage on STEM track in Grade 11, without
and with IPWs

Without Attrition
Weights

With Attrition
Weights

Quadratic Nonlinear Quadratic Nonlinear

(1) (2) (3) (4)
Comparative STEM Advantage 0.038∗ 0.030 0.073∗∗∗ 0.047∗

(0.020) (0.021) (0.024) (0.026)

Comparative STEM Advantage × Female 0.202∗∗∗ 0.161∗∗∗ 0.182∗∗∗ 0.139∗∗∗

(0.022) (0.022) (0.025) (0.025)
Obs. 72,940 72,940 72,865 72,865
School × Year FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Mean Y 0.63 0.63 0.63 0.63
St. Dev Y 0.48 0.48 0.48 0.48

Notes: This table reports OLS estimates for model (4), without correcting for attrition (columns 1 and 2),
and using inverted probability weights to account for attrition (columns 3 and 4). In each regression, the
dependent variable is a dummy for whether the student applies to a STEM track at the end of grade 10.
The first specification includes a quadratic term for STEM advantage and the second specification includes
10 dummies for different levels of absolute STEM advantage. Each regression controls for student gender,
absolute STEM advantage, STEM, non-STEM performance, interactions of individual terms with gender, and
classroom FE. Standard errors are clustered at the school-cohort level. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A7: The Effect of Comparative STEM Advantage on University Application using Different
Definitions of STEM Departments

Linear Quadratic Cubic Quartic Quintic Nonlinear
(1) (2) (3) (4) (5) (6)

STEM departments =
Sciences, Engineering, and Technology

Comparative STEM Advantage 0.070∗∗∗ -0.040 -0.046∗ -0.040 -0.033 -0.014
(0.024) (0.026) (0.026) (0.027) (0.027) (0.028)

Comparative STEM Advantage × Female 0.093∗∗∗ 0.111∗∗∗ 0.112∗∗∗ 0.110∗∗∗ 0.108∗∗∗ 0.102∗∗∗

(0.027) (0.028) (0.028) (0.028) (0.028) (0.028)
Obs. 45,259 45,259 45,259 45,259 45,259 45,259
Mean of Y 0.72 0.72 0.72 0.72 0.72 0.72
St. Dev. Y 0.45 0.45 0.45 0.45 0.45 0.45
Raw Gender Gap Y -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

STEM departments = Sciences, Engineering,
Technology, Economics, and Business

Comparative STEM Advantage 0.114∗∗∗ -0.005 0.001 -0.011 -0.011 0.008
(0.021) (0.022) (0.023) (0.024) (0.024) (0.024)

Comparative STEM Advantage × Female 0.128∗∗∗ 0.174∗∗∗ 0.153∗∗∗ 0.147∗∗∗ 0.147∗∗∗ 0.142∗∗∗

(0.023) (0.024) (0.025) (0.025) (0.025) (0.025)
Obs. 72,940 72,940 72,940 72,940 72,940 72,940
Mean of Y 0.55 0.55 0.55 0.55 0.55 0.55
St. Dev. Y 0.50 0.50 0.50 0.50 0.50 0.50
Raw Gender Gap Y -0.22 -0.22 -0.22 -0.22 -0.22 -0.22

STEM departments = Sciences, Engineering,
Technology, and Health Science

Comparative STEM Advantage 0.133∗∗∗ 0.065∗∗∗ 0.056∗∗ 0.041 0.040 0.045∗

(0.022) (0.024) (0.024) (0.025) (0.025) (0.025)

Comparative STEM Advantage × Female 0.110∗∗∗ 0.146∗∗∗ 0.127∗∗∗ 0.126∗∗∗ 0.125∗∗∗ 0.121∗∗∗

(0.023) (0.024) (0.025) (0.025) (0.025) (0.025)
Obs. 72,940 72,940 72,940 72,940 72,940 72,940
Mean of Y 0.61 0.61 0.61 0.61 0.61 0.61
St. Dev. Y 0.49 0.49 0.49 0.49 0.49 0.49
Raw Gender Gap Y -0.07 -0.07 -0.07 -0.07 -0.07 -0.07

Classroom FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Notes: This table reports OLS estimates for model (4) for application to university STEM departments, using broader definitions
of STEM departments. Panel A uses displays the effect using the same definition of STEM used in the main analysis for comparison
purposes. Panel B displays the results when Economics and Business departments are included in the definition of STEM. Panel
C shows the results when Health Science departments are included in the STEM definition. In each panel, we show several
specifications for different degrees of polynomials for STEM advantage (columns 1-5) as well as a nonlinear specification that
uses dummy variables for each decile of rank (column 6). Each regression controls for student gender, absolute STEM advantage,
STEM, non-STEM performance, interactions of individual terms with gender, and classroom FE. Standard errors are clustered
at the school-cohort level. The last row in each panel shows the slope coefficient of the regression of each outcome variable on
a female indicator, reflecting the gender gap in that outcome. Each regression controls for student STEM performance, non-
STEM performance, and absolute STEM advantage. Each regression includes classroom FE. Standard errors are clustered at the
school-cohort level. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A8: The Effect of Comparative STEM Advantage on STEM Track Choice in 11th Grade,
using Different Definitions of STEM Subjects

STEM Track
in Grade 11

(1) (2) (3) (4)
Comparative STEM Advantage 0.030

(0.021)

Comparative STEM Advantage × Female 0.161∗∗∗

(0.022)

Comparative STEM Advantage
(STEM=Algebra) 0.044∗∗

(0.021)

Comparative STEM Advantage
(STEM=Algebra) × Female 0.152∗∗∗

(0.023)

Comparative STEM Advantage
(STEM=Chemistry) 0.050∗∗

(0.021)

Comparative STEM Advantage
(STEM=Chemistry) × Female 0.151∗∗∗

(0.021)

Comparative STEM Advantage
(STEM=Physics) 0.050∗∗

(0.021)

Comparative STEM Advantage
(STEM=Physics) × Female 0.110∗∗∗

(0.022)
Obs. 72,940 72,940 72,940 72,940
Classroom FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Notes: This table reports OLS estimates for model (4), using different definitions of STEM advan-
tage. In column (1) STEM is defined as the average of Algebra, Chemistry, and Physics; in column
(2) STEM is defined as performance only in Algebra; in column (3) STEM is defined as performance
only in Chemistry; in column (4) STEM is defined as performance only in Physics. The non-STEM
subjects average performance is always defined as average performance in Modern Greek, Greek
Literature, and Ancient Greek. In each regression the dependent variable is a dummy indicating
whether the student applied to a STEM track at the end of grade 10. Each regression controls for
student gender, a second-order polynomial of absolute STEM advantage, STEM, non-STEM perfor-
mance, interactions of individual terms with gender, and classroom FE. Standard errors are clustered
at the school-cohort level. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Table A9: The Effect of Comparative Non-STEM Advantage on Future Study Decisions

STEM Track
in Grade 11

Applied for STEM
University Degree

Quadratic Non Linear Quadratic Non Linear

(1) (2) (3) (4)
Comparative non-STEM Adv. -0.025 -0.035 -0.045 -0.014

(0.021) (0.023) (0.028) (0.031)

Comparative non-STEM Adv. × Female -0.168∗∗∗ -0.113∗∗∗ -0.058 -0.044
(0.030) (0.034) (0.045) (0.048)

Obs. 72,940 72,940 45,259 45,259
Classroom FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Mean Y 0.63 0.63 0.72 0.72
St. Dev Y 0.48 0.48 0.45 0.45
Raw Gender Gap Y -0.34 -0.34 -0.03 -0.03

Notes: This table reports the OLS estimates for model (4). Rank in non-STEM advantage is used rather than
rank in STEM advantage. For each of the two outcomes (grade 11 STEM track choice and application to STEM
degree program), two specifications are considered. Columns 1 and 3 show the effect of comparative non-STEM
advantage, while columns 2 and 4 report the interaction term between comparative non-STEM advantage and the
dummy for female. Each regression controls for student gender, absolute STEM advantage, STEM, non-STEM
performance, interactions of individual terms with gender, and classroom FE. Standard errors are clustered at
the school-cohort level. The last row in each panel shows the slope coefficient of the regression of each outcome
variable on a female indicator, reflecting the gender gap in that outcome. * p < 0.1; ** p < 0.05; *** p < 0.01.
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Using Performance in the First Semester of 10th Grade

In this section, we employ performance in the first semester of 10th grade to compute students’ absolute and

comparative STEM advantage. Students are allocated to classrooms at the beginning of grade 10. Therefore,

a student’s final exam scores at the end of the year, which determine their comparative STEM advantage,

could be affected by peer effects. In our main analysis, this problem is mitigated by the fact that classroom

average performance is controlled for through classroom FE. Nevertheless, we decided to use performance

during the first semester in grade 10, as robustness check. Table A10 shows the summary statistics when

performance in the first semester of 10th grade is used. Figure A7 shows the performance in the first semester

of 10th grade for males and females in Algebra, Physics, Chemistry, Modern Greek, Greek Literature, and

Ancient Greek. Table 8 reports the estimates of our main model using first-semester performance. The results

remain robust.

Table A10: Descriptive Statistics: Using Performance in First Semester 10th Grade

Male Female Difference p-value

(1) (2) (3) (4)

Panel A: Performance in Grade 10

Algebra 14.078 14.556 0.478 0.000
Physics 14.277 14.591 0.314 0.000
Chemistry 14.594 15.144 0.550 0.000
Modern Greek 13.891 15.057 1.166 0.000
Greek Literature 14.378 15.807 1.429 0.000
Ancient Greek 13.891 15.214 1.323 0.000

Panel B: Constructed variables in Grade 10

Own Grade in STEM 14.315 14.763 0.448 0.000
Own Grade in non-STEM 14.052 15.357 1.305 0.000
Class Average Grade in STEM 14.541 14.565 0.024 0.001
Class Average Grade in non-STEM 14.754 14.761 0.007 0.346
Comparative STEM Advantage 0.456 0.316 -0.140 0.000

Notes: This table reports the gender differences in performance for the six subjects we use
to construct our variable in grade 10 (Panel A) and the gender differences for the variable
we construct and we use for our analysis (Panel B). The fourth column reports p-values for
the t-test on the gender difference on each variables.
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Appendix Figures

Figure A1: Distribution of Performance in STEM and Non-STEM Subjects at the End of 10th

Grade
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Notes: These two graphs plot the distributions of performance at the end of 10th grade for STEM subjects (Mathematics,
Physics, and Chemistry) in the first graph and non-STEM subjects (Modern Greek, Ancient Greek, and Greek Literature) in
the second graph.
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Figure A2: Distribution of Absolute STEM Advantage at the End of 10th Grade
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Notes: This graph plots the distribution of absolute STEM advantage at the end of grade 10 for males and females.
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Figure A3: Proportion of Males and Females by Quintile of STEM/Non-STEM Performance
Distribution
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Notes: These two figures show the proportion of students by quintiles of the STEM and non-STEM performance distribution at
the end of grade 10. STEM ability is computed as average GPA in Algebra, Physics, and Chemistry. Non-STEM performance is
computed as average GPA in Modern Greek, Greek Literature, and Ancient Greek. While the proportion of females is constant
across the quintile of STEM performance distribution, a greater number of female are in the top quintiles of the non-STEM
performance distribution. The dotted red line is drawn at 0.5 to show the equal representation of gender as benchmark.
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Figure A4: Variation of Comparative STEM Advantage with Respect to STEM and Non-STEM
Performance
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Notes: These two box plots show the variation in rank in STEM advantage by decile of STEM and non-STEM performance at
the end of grade 10.
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Figure A5: Distribution of Dispersion of Absolute STEM Advantage within Classrooms

Notes: The histogram of within-classroom standard deviation of absolute STEM advantage reveals substantial variation in the
dispersion of absolute STEM advantage in the classroom. The vertical line corresponds to the standard deviation of absolute
STEM advantage across all students.
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Figure A6: Differential Effect of Comparative STEM Advantage across Different Quintiles STEM
and Non-STEM Performance
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Notes: These two graphs plot the estimates for rank in STEM advantage as in model (4), on STEM track choice in grade 11,
for each quintile of the STEM and non-STEM ability distribution. Both models include a quadratic polynomial for absolute
STEM advantage. Standard errors are clustered at the school-cohort level.
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Figure A7: Performance in STEM and Non-STEM Subjects in 10th Grade by Gender
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Notes: The graph displays the performance in six subjects for males and females. Females perform significantly better in almost
every subject, but their advantage is higher in non-STEM subjects (Modern Greek, Greek Literature, and Ancient Greek).
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